HRTEM low dose: the unfold of the morphed graphene, from amorphous carbon to morphed graphenes

被引:42
作者
Calderon, H. A. [1 ]
Okonkwo, A. [2 ]
Estrada-Guel, I. [2 ,3 ]
Hadjiev, V. G. [4 ,5 ]
Alvarez-Ramirez, F. [6 ]
Hernandez, F. C. Robles [2 ,7 ]
机构
[1] ESFM IPN, Dept Fis, Ed 9 Inst Politecn Nacl UPALM, Mexico City 07738, DF, Mexico
[2] Univ Houston, Dept Mech Engn Technol, Houston, TX 77204 USA
[3] CIMAV, Miguel de Cervantes 120, Chihuahua 31109, Chih, Mexico
[4] Univ Houston, Texas Ctr Superconduct, Houston, TX 77204 USA
[5] Univ Houston, Dept Mech Engn, Houston, TX 77204 USA
[6] Inst Mexicano Petr, Eje Cent Lazaro Cardenas Norte 152, Mexico City 07730, DF, Mexico
[7] Univ Houston, Ctr Adv Mat, Houston, TX 77204 USA
关键词
D O I
10.1186/s40679-016-0024-z
中图分类号
TH742 [显微镜];
学科分类号
摘要
We present experimental evidence under low-dose conditions transmission electron microscopy for the unfolding of the evolving changes in carbon soot during mechanical milling. The milled soot shows evolving changes as a function of the milling severity or time. Those changes are responsible for the transformation from amorphous carbon to graphenes, graphitic carbon, and highly ordered structures such as morphed graphenes, namely Rh6 and Rh6-II. The morphed graphenes are corrugated layers of carbon with cross-linked covalently nature and sp(2)- or sp(3)-type allotropes. Electron microscopy and numerical simulations are excellent complementary tools to identify those phases. Furthermore, the TEAM 05 microscope is an outstanding tool to resolve the microstructure and prevent any damage to the sample. Other characterization techniques such as XRD, Raman, and XPS fade to convey a true identification of those phases because the samples are usually blends or mixes of the mentioned phases.
引用
收藏
页数:12
相关论文
共 48 条
[1]   Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics [J].
Berger, C ;
Song, ZM ;
Li, TB ;
Li, XB ;
Ogbazghi, AY ;
Feng, R ;
Dai, ZT ;
Marchenkov, AN ;
Conrad, EH ;
First, PN ;
de Heer, WA .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (52) :19912-19916
[2]   Morphed graphene nanostructures: Experimental evidence for existence [J].
Calderon, H. A. ;
Estrada-Guel, I. ;
Alvarez-Ramriez, F. ;
Hadjiev, V. G. ;
Hernandez, F. C. Robles .
CARBON, 2016, 102 :288-296
[3]   Maintaining the genuine structure of 2D materials and catalytic nanoparticles at atomic resolution [J].
Calderon, H. A. ;
Kisielowski, C. ;
Specht, P. ;
Barton, B. ;
Godinez-Salomon, F. ;
Solorza-Feria, O. .
MICRON, 2015, 68 :164-175
[4]  
Carlo F. Andrea, 1824, PHILOS T A, V362, P2477
[5]  
Choi W., 2012, GRAPHENE SYNTHESIS A, Vxv, P347
[6]   First principles methods using CASTEP [J].
Clark, SJ ;
Segall, MD ;
Pickard, CJ ;
Hasnip, PJ ;
Probert, MJ ;
Refson, K ;
Payne, MC .
ZEITSCHRIFT FUR KRISTALLOGRAPHIE, 2005, 220 (5-6) :567-570
[7]  
Cullity B, 1978, METALLURGY MAT, P555
[8]   Characterizing Graphene, Graphite, and Carbon Nanotubes by Raman Spectroscopy [J].
Dresselhaus, M. S. ;
Jorio, A. ;
Saito, R. .
ANNUAL REVIEW OF CONDENSED MATTER PHYSICS, VOL 1, 2010, 1 :89-108
[9]   CARBON INTERACTION WITH NICKEL SURFACES - MONOLAYER FORMATION AND STRUCTURAL STABILITY [J].
EIZENBERG, M ;
BLAKELY, JM .
JOURNAL OF CHEMICAL PHYSICS, 1979, 71 (08) :3467-3477
[10]  
Estrada-Guel I., 2014, MICROS MICROANAL, V20, P1780