ASYMPTOTIC ANALYSIS OF A MONOSTABLE EQUATION IN PERIODIC MEDIA

被引:6
作者
Alfaro, Matthieu [1 ]
Giletti, Thomas [2 ]
机构
[1] Univ Montpellier 2, I3M, CC051,Pl Eugene Bataillon, F-34095 Montpellier 5, France
[2] Univ Lorraine, IECL, BP 70239, F-54506 Vandoeuvre Les Nancy, France
来源
TAMKANG JOURNAL OF MATHEMATICS | 2016年 / 47卷 / 01期
关键词
Propagating interface; periodicmedia; pulsating front; monostable nonlinearity; Hamilton-Jacobi equation; viscosity solution;
D O I
10.5556/j.tkjm.47.2016.1872
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a multidimensional monostable reaction-diffusion equation whose nonlinearity involves periodic heterogeneity. This serves as a model of invasion for a population facing spatial heterogeneities. As a rescaling parameter tends to zero, we prove the convergence to a limit interface, whose motion is governed by the minimal speed (in each direction) of the underlying pulsating fronts. This dependance of the speed on the (moving) normal direction is in contrast with the homogeneous case and makes the analysis quite involved. Key ingredients are the recent improvement [4] of the well-known spreading properties [32], [9], and the solution of a Hamilton-Jacobi equation.
引用
收藏
页码:1 / 26
页数:26
相关论文
共 33 条
[1]  
Alfaro M., VARYING DIRECTION PR
[2]  
Alfaro M., 2014, DIFFERENTIAL INTEGRA, V27, P81
[3]   SHARP INTERFACE LIMIT OF THE FISHER-KPP EQUATION [J].
Alfaro, Matthieu ;
Ducrot, Arnaud .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2012, 11 (01) :1-18
[4]   SHARP INTERFACE LIMIT OF THE FISHER-KPP EQUATION WHEN INITIAL DATA HAVE SLOW EXPONENTIAL DECAY [J].
Alfaro, Matthieu ;
Ducrot, Arnaud .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2011, 16 (01) :15-29
[5]   ON HOPF FORMULAS FOR SOLUTIONS OF HAMILTON-JACOBI EQUATIONS [J].
BARDI, M ;
EVANS, LC .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1984, 8 (11) :1373-1381
[6]   WAVE-FRONT PROPAGATION FOR REACTION-DIFFUSION SYSTEMS OF PDE [J].
BARLES, G ;
EVANS, LC ;
SOUGANDIS, PE .
DUKE MATHEMATICAL JOURNAL, 1990, 61 (03) :835-858
[7]  
BARLES G, 1994, CR ACAD SCI I-MATH, V319, P679
[8]   A new approach to front propagation problems: Theory and applications [J].
Barles, G ;
Souganidis, PE .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1998, 141 (03) :237-296
[9]   Analysis of the periodically fragmented environment model: II - biological invasions and pulsating travelling fronts [J].
Berestycki, H ;
Hamel, F ;
Roques, L .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2005, 84 (08) :1101-1146
[10]   Analysis of the periodically fragmented environment model: I - Species persistence [J].
Berestycki, H ;
Hamel, F ;
Roques, L .
JOURNAL OF MATHEMATICAL BIOLOGY, 2005, 51 (01) :75-113