CONVERGENCE OF THE FINITE-VOLUME METHOD FOR MULTIDIMENSIONAL CONSERVATION-LAWS

被引:64
作者
COCKBURN, B
COQUEL, F
LEFLOCH, PG
机构
[1] UNIV PARIS 06,LAN,CNRS,URA 189,F-75252 PARIS 05,FRANCE
[2] CTR MATH APPL,PARIS,FRANCE
[3] CNRS,PARIS,FRANCE
[4] ECOLE POLYTECH,F-91128 PALAISEAU,FRANCE
[5] UNIV SO CALIF,DEPT MATH,LOS ANGELES,CA 90089
关键词
CONSERVATION LAW; MEASURE-VALUED SOLUTION; FINITE VOLUME METHOD; ENTROPY DISSIPATION;
D O I
10.1137/0732032
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish the convergence of the finite volume method applied to multidimensional hyperbolic conservation laws and based on monotone numerical flux-functions. Our technique applies with a fairly unrestrictive assumption on the triangulations (''flat elements'' are allowed) and to Lipschitz continuous flux-functions. We treat the initial and boundary value problem and obtain the strong convergence of the scheme to the unique entropy discontinuous solution in the sense of Kruzkov. The proof of convergence is based on a convergence framework [Coquel and LeFloch, Math. Comp., 57 (1991), pp. 169-210 and J. Numer. Anal., 30 (1993), pp. 675-700]. From a convex decomposition of the scheme, we derive a new estimate for the rate of entropy dissipation and a new formulation of the discrete entropy inequalities. These estimates are shown to be sufficient for the passage to the limit in the discrete equation. Convergence follows from DiPerna's uniqueness result in the class of entropy measure-valued solutions.
引用
收藏
页码:687 / 705
页数:19
相关论文
共 42 条
  • [1] Bardos C., 1979, COMMUN PART DIFF EQ, V4, P1017, DOI DOI 10.1080/03605307908820117
  • [2] CHAMPIER S, 1992, CONVERGENCE UPSTREAM
  • [3] CHEN GQ, 1993, MATH COMPUT, V61, P629, DOI 10.1090/S0025-5718-1993-1185240-3
  • [4] COCKBURN B, 1993, MATH COMPUT, V63, P77
  • [5] COCKBURN B, 1991, IMA771 PREPR
  • [6] CONWAY E, 1966, COMMUN PUR APPL MATH, V19, P95
  • [7] COQUEL F, 1990, CR ACAD SCI I-MATH, V310, P455
  • [8] COQUEL F, 1991, MATH COMPUT, V57, P169, DOI 10.1090/S0025-5718-1991-1079010-2
  • [9] CONVERGENCE OF FINITE-DIFFERENCE SCHEMES FOR CONSERVATION-LAWS IN SEVERAL SPACE DIMENSIONS - A GENERAL-THEORY
    COQUEL, F
    LEFLOCH, P
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1993, 30 (03) : 675 - 700
  • [10] COQUEL F, ENTROPY SATISFYING M