THE p-HARMONIC MEASURE OF A SMALL SPHERICAL CAP

被引:7
|
作者
Deblassie, Dante [1 ]
Smits, Robert G. [1 ]
机构
[1] New Mexico State Univ, Dept Math Sci, POB 30001,Dept 3MB, Las Cruces, NM 88003 USA
来源
MATEMATICHE | 2016年 / 71卷 / 01期
关键词
p-harmonic measure; Aronsson function; spherical cap;
D O I
10.4418/2016.71.1.12
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We estimate the p-harmonic measure of a small spherical cap.
引用
收藏
页码:149 / 171
页数:23
相关论文
共 50 条
  • [11] The p-harmonic approximation and the regularity of p-harmonic maps
    Duzaar, F
    Mingione, G
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2004, 20 (03) : 235 - 256
  • [12] Differentiability of p-Harmonic Functions on Metric Measure Spaces
    Jasun Gong
    Piotr Hajłasz
    Potential Analysis, 2013, 38 : 79 - 93
  • [13] Differentiability of p-Harmonic Functions on Metric Measure Spaces
    Gong, Jasun
    Hajlasz, Piotr
    POTENTIAL ANALYSIS, 2013, 38 (01) : 79 - 93
  • [14] The p-Royden and p-Harmonic Boundaries for Metric Measure Spaces
    Lucia, Marcello
    Puls, Michael J.
    ANALYSIS AND GEOMETRY IN METRIC SPACES, 2015, 3 (01): : 111 - 122
  • [15] ON THE ABSOLUTE CONTINUITY OF p-HARMONIC MEASURE AND SURFACE MEASURE IN REIFENBERG FLAT DOMAINS
    Akman, Murat
    PACIFIC JOURNAL OF MATHEMATICS, 2017, 286 (01) : 25 - 37
  • [16] Regularity and uniqueness of p-harmonic maps with small range
    Fardoun, Ali
    Regbaoui, Rachid
    GEOMETRIAE DEDICATA, 2013, 164 (01) : 259 - 271
  • [17] Regularity and uniqueness of p-harmonic maps with small range
    Ali Fardoun
    Rachid Regbaoui
    Geometriae Dedicata, 2013, 164 : 259 - 271
  • [18] The spherical p-harmonic eigenvalue problem in non-smooth domains
    Gkikas, Konstantinos T.
    Veron, Laurent
    JOURNAL OF FUNCTIONAL ANALYSIS, 2018, 274 (04) : 1155 - 1176
  • [19] The p-harmonic system with measure-valued right hand side
    Dolzmann, G
    Hungerbuhler, N
    Muller, S
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1997, 14 (03): : 353 - 364
  • [20] On p-harmonic morphisms
    Loubeau, E
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2000, 12 (03) : 219 - 229