SIMPLE NESTS INVARIANT BY COMPACT SELF-ADJOINT OPERATORS - A NONSTANDARD APPROACH

被引:0
|
作者
BERTOGLIO, N [1 ]
MARTINEZ, S [1 ]
机构
[1] UNIV CHILE,FAC CIENCIAS FIS & MATEMAT,DEPT MATEMAT & CIENCIAS COMP,SANTIAGO,CHILE
关键词
D O I
10.1016/0022-247X(91)90158-V
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Λ be a compact self-adjoint operator and Γ be a simple nest Λ-invariant. We give a nonstandard description of Γ and by using nonstandard operator theory we supply an elementary proof of the super-diagonal form of Λ. © 1991.
引用
收藏
页码:404 / 409
页数:6
相关论文
共 50 条
  • [11] ON EIGENELEMENTS SENSITIVITY FOR COMPACT SELF-ADJOINT OPERATORS AND APPLICATIONS
    El Hamidi, Abdallah
    Hamdouni, Aziz
    Saleh, Marwan
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2016, 9 (02): : 445 - 455
  • [12] Spectral asymptotics for compact self-adjoint Hankel operators
    Pushnitski, Alexander
    Yafaev, Dmitri
    JOURNAL OF SPECTRAL THEORY, 2016, 6 (04) : 921 - 953
  • [13] SELF-ADJOINT CYCLICALLY COMPACT OPERATORS AND ITS APPLICATION
    Kudaybergenov, Karimbergen
    Mukhamedov, Farrukh
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2017, 54 (02) : 679 - 686
  • [14] Diagonals of self-adjoint operators II: non-compact operators
    Bownik, Marcin
    Jasper, John
    MATHEMATISCHE ANNALEN, 2025, 391 (01) : 431 - 507
  • [15] Best Approximations by Increasing Invariant Subspaces of Self-Adjoint Operators
    Lopushansky, Oleh
    Tluczek-Pieciak, Renata
    SYMMETRY-BASEL, 2020, 12 (11): : 1 - 12
  • [16] ON MULTIPLE-EIGENVALUES OF SELF-ADJOINT COMPACT-OPERATORS
    LUPO, D
    MICHELETTI, AM
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1993, 172 (01) : 106 - 116
  • [17] Elementary operators on self-adjoint operators
    Molnar, Lajos
    Smerl, Peter
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 327 (01) : 302 - 309
  • [18] Diagonals of self-adjoint operators
    Arveson, William
    Kadison, Richard V.
    Operator Theory, Operator Algebras, and Applications, 2006, 414 : 247 - 263
  • [19] On the similarity to self-adjoint operators
    G. M. Gubreev
    A. A. Tarasenko
    Functional Analysis and Its Applications, 2014, 48 : 286 - 290
  • [20] ON THE PERMUTABILITY OF SELF-ADJOINT OPERATORS
    DEVINATZ, A
    NUSSBAUM, AE
    VONNEUMANN, J
    ANNALS OF MATHEMATICS, 1955, 62 (02) : 199 - 203