EXISTENCE, UNIQUENESS, AND STABILITY OF NON-LINEAR EVOLUTION EQUATIONS

被引:9
作者
ICHIKAWA, A
PRITCHARD, AJ
机构
[1] Control Theory Centre, University of Warwick, Coventry
关键词
D O I
10.1016/0022-247X(79)90129-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study existence, uniqueness, and stability of nonlinear evolution equations. We develop a new type of perturbation result for a C0 semigroup in Banach space, where the nonlinear operators are not necessarily m-accretive or everywhere defined. Assuming that the semigroup has a smoothing property we obtain local existence, uniqueness and regularity results. We then establish a Liapunov theory which enables us to examine stability. To illustrate our theory several simple examples are presented. © 1979.
引用
收藏
页码:454 / 476
页数:23
相关论文
共 14 条
[1]  
Adams R.A., 2003, PURE APPL MATH SOB O, V2nd ed.
[2]  
Barbu V., 1976, NONLINEAR SEMIGROUPS
[3]  
Burgers J., 1948, ADV APPL MECH, VI
[4]  
Crandall M.G., 1969, J FUNCT ANAL, V3, P376
[5]  
CRANDALL MG, 1971, AM J MATH, V113, P265
[6]   ABSTRACT THEORY FOR UNBOUNDED CONTROL ACTION FOR DISTRIBUTED PARAMETER-SYSTEMS [J].
CURTAIN, RF ;
PRITCHARD, AJ .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1977, 15 (04) :566-611
[7]  
KATO T, 1965, NONLINEAR EVOLUTION, V17
[8]  
KATO T, 1970, ACCRETIVE OPERATOR 1, P138
[9]  
Kato T., 1966, PERTURBATION THEORY
[10]  
PLAUT RH, 71 AM SOC MECH ENG P