A NEW CLASS OF HEURISTIC ALGORITHMS FOR WEIGHTED PERFECT MATCHING

被引:4
作者
GRIGORIADIS, MD
KALANTARI, B
机构
[1] Rutgers State Univ of New Jersey, United States
关键词
Computer Programming - Algorithms - Optimization;
D O I
10.1145/48014.48015
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The minimum-weight perfect matching problem for complete graphs of n vertices with edge weights satisfying the triangle inequality is considered. For each nonnegative integer k &le log3n, and for any perfect matching algorithm that runs in t(n) time and has an error bound of f(n) times the optimal weight, an O(max{n2,t(3-kn)}))-time heuristic algorithm with an error bound of (7/3)k(1+f(3-kn))-1 is given. By the selection of k as appropriate functions of n, heuristics that have better running times and/or error bounds than existing ones are derived.
引用
收藏
页码:769 / 776
页数:8
相关论文
共 22 条
[1]  
ASANO T, 1985, COMPUT GEOM, V1, P153
[2]   A SURVEY OF HEURISTICS FOR THE WEIGHTED MATCHING PROBLEM [J].
AVIS, D .
NETWORKS, 1983, 13 (04) :475-493
[3]  
BENTLEY JL, 1980, J ALGORITHMS, V0001, P00301
[4]  
Christofides N., 2022, OPERATIONS RES FORUM, V3, DOI [10.1007/s43069-021-00101-z, DOI 10.1007/S43069-021-00101-Z]
[5]  
CUNNINGHAM WH, 1978, MATH PROGRAM STUD, V8, P50, DOI 10.1007/BFb0121194
[6]   SOLVING LARGE-SCALE MATCHING PROBLEMS EFFICIENTLY - A NEW PRIMAL MATCHING APPROACH [J].
DERIGS, U .
NETWORKS, 1986, 16 (01) :1-16
[7]   PATHS TREES AND FLOWERS [J].
EDMONDS, J .
CANADIAN JOURNAL OF MATHEMATICS, 1965, 17 (03) :449-&
[8]   MAXIMUM MATCHING AND A POLYHEDRON WITH O'1-VERTICES [J].
EDMONDS, J .
JOURNAL OF RESEARCH OF THE NATIONAL BUREAU OF STANDARDS SECTION B-MATHEMATICS AND MATHEMATICAL, 1965, B 69 (1-2) :125-+
[9]  
Gabow H., 1973, THESIS STANFORD U ST
[10]   ON THE EXISTENCE OF WEAK GREEDY MATCHING HEURISTICS [J].
GRIGORIADIS, MD ;
KALANTARI, B ;
LAI, CY .
OPERATIONS RESEARCH LETTERS, 1986, 5 (04) :201-205