TIME-REVERSAL OF INFINITE-DIMENSIONAL DIFFUSIONS

被引:25
作者
FOLLMER, H [1 ]
WAKOLBINGER, A [1 ]
机构
[1] JOHANNES KEPLER UNIV,INST MATH,A-4040 LINZ,AUSTRIA
关键词
D O I
10.1016/0304-4149(86)90114-6
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
引用
收藏
页码:59 / 77
页数:19
相关论文
共 50 条
[21]   INFINITE-DIMENSIONAL DIFFUSIONS FROM THE ITO POINT OF VIEW [J].
BARTH, T .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1984, 16 (01) :18-19
[22]   Propagation of Gibbsianness for Infinite-dimensional Gradient Brownian Diffusions [J].
David Dereudre ;
Sylvie Rœlly .
Journal of Statistical Physics, 2005, 121 :511-551
[23]   Explicit contraction rates for a class of degenerate and infinite-dimensional diffusions [J].
Zimmer, Raphael .
STOCHASTICS AND PARTIAL DIFFERENTIAL EQUATIONS-ANALYSIS AND COMPUTATIONS, 2017, 5 (03) :368-399
[24]   Explicit contraction rates for a class of degenerate and infinite-dimensional diffusions [J].
Raphael Zimmer .
Stochastics and Partial Differential Equations: Analysis and Computations, 2017, 5 :368-399
[26]   Functional inequalities for a family of infinite-dimensional diffusions with degenerate noise [J].
Baudoin, Fabrice ;
Gordina, Maria ;
Herzog, David P. ;
Kim, Jina ;
Melcher, Tai .
JOURNAL OF FUNCTIONAL ANALYSIS, 2025, 288 (06)
[27]   On uniqueness of invariant measures for finite- and infinite-dimensional diffusions [J].
Albeverio, S ;
Bogachev, V ;
Röckner, M .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1999, 52 (03) :325-362
[28]   Admissible vector fields and related diffusions on infinite-dimensional manifolds [J].
K. D. Elworthy ;
Zhi-Ming Ma .
Ukrainian Mathematical Journal, 1997, 49 (3) :451-466
[29]   TIME-REVERSAL FOR GAP DIFFUSIONS WITH NONLOCAL BOUNDARY-CONDITIONS [J].
WEBER, M .
MATHEMATISCHE NACHRICHTEN, 1994, 170 :299-306
[30]   Two-Parameter Family of Infinite-Dimensional Diffusions on the Kingman Simplex [J].
Petrov, L. A. .
FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2009, 43 (04) :279-296