NONDEFORMABILITY OF THE COMPLEX HYPERQUADRIC

被引:9
作者
HWANG, JM
机构
[1] Department of Math., University of Notre Dame, Notre Dame, 46556, IN
关键词
D O I
10.1007/BF01241131
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that the complex hyperquadric of dimension greater than or equal to 3 does not allow nontrivial deformation. We study the orbit structure of certain Vector fields defined on the potential deformation and deduce the nondeformability from the attracting property of these vector fields.
引用
收藏
页码:317 / 338
页数:22
相关论文
共 12 条
[1]  
Andreotti A., 1971, LECT NOTES MATH, V234
[2]  
BIALYNICKIBIRUL.A, 1983, T AM MATH SOC, V279, P773
[3]   AUTOMORPHISM GROUPS OF COMPACT KAHLER MANIFOLDS [J].
FUJIKI, A .
INVENTIONES MATHEMATICAE, 1978, 44 (03) :225-258
[4]   ON THE DOUADY SPACE OF A COMPACT COMPLEX-SPACE IN THE CATEGORY -C .2. [J].
FUJIKI, A .
PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 1984, 20 (03) :461-489
[5]  
Kaup W., 1967, INVENT MATH, V3, P43, DOI DOI 10.1007/BF01425490
[6]   ON DEFORMATIONS OF COMPLEX ANALYTIC STRUCTURES .2. [J].
KODAIRA, K ;
SPENCER, DC .
ANNALS OF MATHEMATICS, 1958, 67 (03) :403-466
[7]  
MABUCHI T, 1993, KAHLERIAN RIGIDITY I
[8]  
Martinet J., 1981, LECT NOTES MATH, V901, P55
[9]  
NAKAMURA I, 1988, ALGEBRAIC GEOMETRY C, V1, P379
[10]  
Pliss V. A., 1965, DIFF EQUAT, V1, P111