Finite Difference Method for (2+1)-Kuramoto-Sivashinsky Equation

被引:6
作者
Bezia, Abdelhamid [1 ]
Mabrouk, Anouar Ben [2 ,3 ,4 ]
机构
[1] Univ Sci & Technol Houari Boumediene, Algebra & Number Theory Lab, Fac Math, BP 32, Algiers 16111, Algeria
[2] Inst Super Math Appl & Informat Kairouan, Dept Math, Ave Assad Ibn Al Fourat, Kairouan 3100, Tunisia
[3] Univ Monastir, Number Theory & Nonlinear Anal Dept Math, Lab Algebra, Fac Sci, Monastir 5000, Tunisia
[4] Tabuk Univ, Dept Math, Coll Sci, Tabuk, Saudi Arabia
来源
JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS | 2018年 / 31卷 / 03期
关键词
Kuramoto-Sivashinsky equation; Finite difference method; Lyapunov-Sylvester operators;
D O I
10.4208/jpde.v31.n3.1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper investigates a solution technique for solving a two-dimensional Kuramoto-Sivashinsky equation discretized using a finite difference method. It consists of an order reduction method into a coupled system of second-order equations, and to formulate the fully discretized, implicit time-marched system as a Lyapunov-Sylvester matrix equation. Convergence and stability is examined using Lyapunov criterion and manipulating generalized Lyapunov-Sylvester operators. Some numerical implementations are provided at the end to validate the theoretical results.
引用
收藏
页码:193 / 213
页数:21
相关论文
共 33 条
[11]  
Il'yashenko Ju. S., 1992, Journal of Dynamics and Differential Equations, V4, P585, DOI 10.1007/BF01048261
[13]   UNIVERSAL PROPERTIES OF THE 2-DIMENSIONAL KURAMOTO-SIVASHINSKY EQUATION [J].
JAYAPRAKASH, C ;
HAYOT, F ;
PANDIT, R .
PHYSICAL REVIEW LETTERS, 1993, 71 (01) :12-15
[14]   On the inverse and determinant of general bordered tridiagonal matrices [J].
Jia, Jiteng ;
Li, Sumei .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2015, 69 (06) :503-509
[15]  
Juknevicius V., 2015, ARXIV150502254
[16]   PERSISTENT PROPAGATION OF CONCENTRATION WAVES IN DISSIPATIVE MEDIA FAR FROM THERMAL EQUILIBRIUM [J].
KURAMOTO, Y ;
TSUZUKI, T .
PROGRESS OF THEORETICAL PHYSICS, 1976, 55 (02) :356-369
[17]   EXPLICIT SOLUTIONS OF LINEAR MATRIX EQUATIONS [J].
LANCASTER, P .
SIAM REVIEW, 1970, 12 (04) :544-+
[18]  
Lundbek Hansen J., 1997, ARXIVCHAODYN970900
[19]   Lyapunov type operators for numerical solutions of PDEs [J].
Mabrouk, Anouar Ben ;
Ayadi, Mekki .
APPLIED MATHEMATICS AND COMPUTATION, 2008, 204 (01) :395-407
[20]   Finite difference approximate solutions for a mixed sub-superlinear equation [J].
Mabrouk, Anouar Ben ;
Mohamed, Mohamed Lakdar Ben ;
Omrani, Khaled .
APPLIED MATHEMATICS AND COMPUTATION, 2007, 187 (02) :1007-1016