Finite Difference Method for (2+1)-Kuramoto-Sivashinsky Equation

被引:6
作者
Bezia, Abdelhamid [1 ]
Mabrouk, Anouar Ben [2 ,3 ,4 ]
机构
[1] Univ Sci & Technol Houari Boumediene, Algebra & Number Theory Lab, Fac Math, BP 32, Algiers 16111, Algeria
[2] Inst Super Math Appl & Informat Kairouan, Dept Math, Ave Assad Ibn Al Fourat, Kairouan 3100, Tunisia
[3] Univ Monastir, Number Theory & Nonlinear Anal Dept Math, Lab Algebra, Fac Sci, Monastir 5000, Tunisia
[4] Tabuk Univ, Dept Math, Coll Sci, Tabuk, Saudi Arabia
来源
JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS | 2018年 / 31卷 / 03期
关键词
Kuramoto-Sivashinsky equation; Finite difference method; Lyapunov-Sylvester operators;
D O I
10.4208/jpde.v31.n3.1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper investigates a solution technique for solving a two-dimensional Kuramoto-Sivashinsky equation discretized using a finite difference method. It consists of an order reduction method into a coupled system of second-order equations, and to formulate the fully discretized, implicit time-marched system as a Lyapunov-Sylvester matrix equation. Convergence and stability is examined using Lyapunov criterion and manipulating generalized Lyapunov-Sylvester operators. Some numerical implementations are provided at the end to validate the theoretical results.
引用
收藏
页码:193 / 213
页数:21
相关论文
共 33 条
[1]   Finite-time singularity versus global regularity for hyper-viscous Hamilton-Jacobi-like equations [J].
Bellout, H ;
Benachour, S ;
Titi, ES .
NONLINEARITY, 2003, 16 (06) :1967-1989
[2]   A linearized finite-difference method for the solution of some mixed concave and convex non-linear problems [J].
Ben Mabrouk, Anouar ;
Ayadi, Mekki .
APPLIED MATHEMATICS AND COMPUTATION, 2008, 197 (01) :1-10
[3]   Anisotropic Estimates for the Two-Dimensional Kuramoto-Sivashinsky Equation [J].
Benachour, Said ;
Kukavica, Igor ;
Rusin, Walter ;
Ziane, Mohammed .
JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2014, 26 (03) :461-476
[4]  
Bezia A, 2016, ELECTRON J DIFFER EQ
[5]  
Cai M., 2013, ISRN MATH PHYS
[6]  
Cartan H, 1971, DIFFERENTIAL CALCULU, V1
[7]   A GLOBAL ATTRACTING SET FOR THE KURAMOTO-SIVASHINSKY EQUATION [J].
COLLET, P ;
ECKMANN, JP ;
EPSTEIN, H ;
STUBBE, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 152 (01) :203-214
[8]   On the State Space Geometry of the Kuramoto-Sivashinsky Flow in a Periodic Domain [J].
Cvitanovic, Predrag ;
Davidchack, Ruslan L. ;
Siminos, Evangelos .
SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2010, 9 (01) :1-33
[9]   New bounds for the Kuramoto-Sivashinsky equation [J].
Giacomelli, L ;
Otto, F .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2005, 58 (03) :297-318
[10]   STABILITY OF THE KURAMOTO-SIVASHINSKY AND RELATED SYSTEMS [J].
GOODMAN, J .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1994, 47 (03) :293-306