Concerning the boundary value problem in the generalised heat conduction equation

被引:0
|
作者
Huber, A
机构
关键词
D O I
10.1002/zamm.19270070605
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:469 / 476
页数:8
相关论文
共 50 条
  • [1] A Study of an Inverse Boundary Value Problem for the Heat Conduction Equation
    A. I. Sidikova
    Numerical Analysis and Applications, 2019, 12 : 70 - 86
  • [2] On the integral equation of an adjoint boundary value problem of heat conduction
    Kosmakova, M. T.
    Romanovski, V. G.
    Orumbayeva, N. T.
    Tuleutaeva, Zh. M.
    Kasymova, L. Zh.
    BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS, 2019, 95 (03): : 33 - 43
  • [3] A Study of an Inverse Boundary Value Problem for the Heat Conduction Equation
    Sidikova, A. I.
    NUMERICAL ANALYSIS AND APPLICATIONS, 2019, 12 (01) : 70 - 86
  • [4] CONDITIONS FOR SOLVABILITY OF A BOUNDARY VALUE PROBLEM RELATIVE TO HEAT CONDUCTION EQUATION
    KIM, EI
    DOKLADY AKADEMII NAUK SSSR, 1961, 140 (03): : 553 - &
  • [5] On the solvability of the first boundary value problem for the loaded equation of heat conduction
    Jenaliyev, M. T.
    Iskakov, S. A.
    Ramazanov, M. I.
    Tuleutaeva, Zh. M.
    BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS, 2018, 89 (01): : 33 - 41
  • [6] On the second boundary value problem for the equation of heat conduction in an unbounded plane angle
    Dzhenaliyev, M. T.
    Kalantarov, V. K.
    Kosmakova, M. T.
    Ramazanov, M. I.
    BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS, 2014, 76 (04): : 47 - 56
  • [7] A boundary value problem for the heat equation
    Dressel, FG
    AMERICAN JOURNAL OF MATHEMATICS, 1933, 55 : 641 - 653
  • [8] HYPERBOLIC HEAT-CONDUCTION EQUATION. MIXED BOUNDARY-VALUE PROBLEM
    Lenyuk, M. P.
    Lakusta, K. V.
    JOURNAL OF ENGINEERING PHYSICS AND THERMOPHYSICS, 2009, 82 (01) : 170 - 175
  • [9] On the singular Volterra integral equation of the boundary value problem for heat conduction in a degenerating domain
    Ramazanov, M., I
    Gulmanov, N. K.
    VESTNIK UDMURTSKOGO UNIVERSITETA-MATEMATIKA MEKHANIKA KOMPYUTERNYE NAUKI, 2021, 31 (02): : 241 - 252
  • [10] Thermodynamic rationale for heat conduction equation and dynamic boundary value problem for piezothermoelastic materials
    Belyaev, AK
    SMART STRUCTURES AND MATERIALS 1999: MATHEMATICS AND CONTROL IN SMART STRUCTURES, 1999, 3667 : 702 - 710