A NUMERICAL ALGORITHM FOR COMPUTING THE INVERSE OF A TOEPLITZ PENTADIAGONAL MATRIX

被引:1
作者
Talibi, Boutaina [1 ]
Aiat Hadj, Ahmed Driss [2 ]
Sarsri, Driss [1 ]
机构
[1] Abdelmalek Essaadi Univ, Natl Sch Appl Sci, Tangier, Morocco
[2] Reg Ctr Trades Educ & Training CRMEF Tangier, Ave My Abdelaziz Souani,BP 3117, Tangier, Morocco
关键词
pentadiagonal matrix; Toeplitz matrix; K-Hessenberg matrix; inverse;
D O I
10.17512/jamcm.2018.3.08
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the current paper, we present a computationally efficient algorithm for obtaining the inverse of a pentadiogonal toeplitz matrix. Few conditions are required, and the algorithm is suited for implementation using computer algebra systems.
引用
收藏
页码:83 / 95
页数:13
相关论文
共 16 条
[1]   Boundary Value Methods for the reconstruction of Sturm-Liouville potentials [J].
Aceto, Lidia ;
Ghelardoni, Paolo ;
Magherini, Cecilia .
APPLIED MATHEMATICS AND COMPUTATION, 2012, 219 (06) :2960-2974
[2]   PGSCM: A family of P-stable Boundary Value Methods for second-order initial value problems [J].
Aceto, Lidia ;
Ghelardoni, Paolo ;
Magherini, Cecilia .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2012, 236 (16) :3857-3868
[3]   An application of the ADM to seven-order Sawada-Kotara equations [J].
El-Sayed, SM ;
Kaya, D .
APPLIED MATHEMATICS AND COMPUTATION, 2004, 157 (01) :93-101
[4]   A fast numerical algorithm for the inverse of a tridiagonal and pentadiagonal matrix [J].
Hadj, Ahmed Driss Aiat ;
Elouafi, Mohamed .
APPLIED MATHEMATICS AND COMPUTATION, 2008, 202 (02) :441-445
[5]   On the characteristic polynomial, eigenvectors and determinant of a pentadiagonal matrix [J].
Hadj, Ahmed Driss Aiat ;
Elouafi, Mohamed .
APPLIED MATHEMATICS AND COMPUTATION, 2008, 198 (02) :634-642
[6]   An explicit and numerical solutions of some fifth-order KdV equation by decomposition method [J].
Kaya, D .
APPLIED MATHEMATICS AND COMPUTATION, 2003, 144 (2-3) :353-363
[7]   Least squares solutions of the matrix equation AXB plus CYD = E with the least norm for symmetric arrowhead matrices [J].
Li, Hongyi ;
Gao, Zongsheng ;
Zhao, Di .
APPLIED MATHEMATICS AND COMPUTATION, 2014, 226 :719-724
[8]   A general 4th-order PDE method to generate Bezier surfaces from the boundary [J].
Monterde, J ;
Ugail, H .
COMPUTER AIDED GEOMETRIC DESIGN, 2006, 23 (02) :208-225
[9]  
Patil PG, 2008, INT J COMPUT SCI NET, V8, P258
[10]   Recursive numerical recipes for the high efficient inversion of the confluent Vandermonde matrices [J].
Respondek, Jerzy S. .
APPLIED MATHEMATICS AND COMPUTATION, 2013, 225 :718-730