ESTIMATES ON THE (N-1)-DIMENSIONAL HAUSDORFF MEASURE OF THE BLOW-UP SET FOR A SEMILINEAR HEAT-EQUATION

被引:70
作者
VELAZQUEZ, JJL
机构
关键词
D O I
10.1512/iumj.1993.42.42021
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the following problem [GRAPHICS] where 1 < p < (N + 2)/(N - 2), and u0(x) is a continuous nonnegative and bounded function. It is shown here that for any blowing-up solution which is different from the uniform one u(T)(x,t) = ((p-1)(T-t))-1/(p-1) the (N-1)-dimensional Hausdorff measure of the blow-up set is bounded in compact sets of R(N).
引用
收藏
页码:445 / 476
页数:32
相关论文
共 20 条
[1]  
[Anonymous], 1966, PERTURBATION THEORY
[2]  
BEBERNES J, 1987, INDIANA U MATH J, V36, P131
[3]   ON THE ASYMPTOTIC SHAPE OF BLOW-UP [J].
BRESSAN, A .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1990, 39 (04) :947-960
[4]   CONVERGENCE, ASYMPTOTIC PERIODICITY, AND FINITE-POINT BLOW-UP IN ONE-DIMENSIONAL SEMILINEAR HEAT-EQUATIONS [J].
CHEN, XY ;
MATANO, H .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1989, 78 (01) :160-190
[5]  
Federer H., 1969, GRUNDLEHREN MATH WIS
[6]   REFINED ASYMPTOTICS FOR THE BLOWUP OF UT-DELTA-U = UP [J].
FILIPPAS, S ;
KOHN, RV .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1992, 45 (07) :821-869
[7]  
FILIPPAS S, 1993, ANN I H POINCARE, V10, P131
[8]   BLOW-UP OF POSITIVE SOLUTIONS OF SEMILINEAR HEAT-EQUATIONS [J].
FRIEDMAN, A ;
MCLEOD, B .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1985, 34 (02) :425-447
[9]  
GALAKTIONOV V, 1991, COMP MATH MATH PHYS+, V31, P399
[10]  
Galaktionov V. A., 1986, DIFF URAVN, V22, P1285