ON ELEMENTARY AMENABLE-GROUPS OF FINITE HIRSCH NUMBER

被引:13
作者
WEHRFRITZ, BAF
机构
来源
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS | 1995年 / 58卷
关键词
D O I
10.1017/S1446788700038258
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give an alternative short proof of a recent theorem of J.A. Hillman and P.A. Linnell that an elementary amenable group with finite Hirsch number has, module its locally finite radical, a soluble normal subgroup with index and derived length bounded only in terms of the Hirsch number of the group.
引用
收藏
页码:219 / 221
页数:3
相关论文
共 6 条
[1]   ELEMENTARY AMENABLE-GROUPS OF FINITE HIRSCH LENGTH ARE LOCALLY-FINITE BY VIRTUALLY-SOLVABLE [J].
HILLMAN, JA ;
LINNELL, PA .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1992, 52 :237-241
[2]   ELEMENTARY AMENABLE-GROUPS AND 4-MANIFOLDS WITH EULER CHARACTERISTIC-0 [J].
HILLMAN, JA .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1991, 50 :160-170
[3]  
Kegel Otto H., 1973, LOCALLY FINITE GROUP, V3
[4]  
MALCEV AI, 1951, MAT SBORNIK, V0028, P00567
[5]  
Robinson J. S., 1972, ERGEBNISSE MATH IHRE, V63
[6]  
WEHRFRTIZ BAF, 1973, INFINITE LINEAR GROU