EXACT SOLUTION FOR ONLINE LEARNING IN MULTILAYER NEURAL NETWORKS

被引:150
作者
SAAD, D [1 ]
SOLLA, SA [1 ]
机构
[1] NIELS BOHR INST,CONNECT,DK-2100 COPENHAGEN,DENMARK
关键词
D O I
10.1103/PhysRevLett.74.4337
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present an analytic solution to the problem of on-line gradient-descent learning for two-layer neural networks with an arbitrary number of hidden units in both teacher and student networks. © 1995 The American Physical Society.
引用
收藏
页码:4337 / 4340
页数:4
相关论文
共 7 条
[1]  
BIEHL M, 1994, IN PRESS LUND U REPO
[2]  
Cybenko G., 1989, Mathematics of Control, Signals, and Systems, V2, P303, DOI 10.1007/BF02551274
[3]   INFINITE NUMBER OF ORDER PARAMETERS FOR SPIN-GLASSES [J].
PARISI, G .
PHYSICAL REVIEW LETTERS, 1979, 43 (23) :1754-1756
[4]  
SAAD D, IN PRESS
[5]   LEARNING A RULE IN A MULTILAYER NEURAL-NETWORK [J].
SCHWARZE, H .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (21) :5781-5794
[6]  
SEUNG HS, 1993, PHYS REV A, V45, P6056
[7]   THE STATISTICAL-MECHANICS OF LEARNING A RULE [J].
WATKIN, TLH ;
RAU, A ;
BIEHL, M .
REVIEWS OF MODERN PHYSICS, 1993, 65 (02) :499-556