TUTTE POLYNOMIALS COMPUTABLE IN POLYNOMIAL-TIME

被引:25
作者
OXLEY, JG [1 ]
WELSH, DJA [1 ]
机构
[1] UNIV BONN,INST MATH,W-5300 BONN,GERMANY
关键词
D O I
10.1016/0012-365X(92)90289-R
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that for any accessible class of matroids of bounded width, the Tutte polynomial is computable in polynomial time.
引用
收藏
页码:185 / 192
页数:8
相关论文
共 17 条
[1]  
[Anonymous], 1993, MATROID THEORY
[2]   LINEAR TIME ALGORITHMS FOR NP-HARD PROBLEMS RESTRICTED TO PARTIAL K-TREES [J].
ARNBORG, S ;
PROSKUROWSKI, A .
DISCRETE APPLIED MATHEMATICS, 1989, 23 (01) :11-24
[3]  
Bixby R. E., 1979, GRAPH THEORY RELATED, P91
[4]   COMBINATORIAL MODEL FOR SERIES-PARALLEL NETWORKS [J].
BRYLAWSKI, T .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 154 (FEB) :1-+
[5]  
Brylawski T.H., 1992, MATROID APPL, V40, P123
[6]   A COMBINATORIAL DECOMPOSITION-THEORY [J].
CUNNINGHAM, WH ;
EDMONDS, J .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1980, 32 (03) :734-765
[7]   ON THE COMPUTATIONAL-COMPLEXITY OF THE JONES AND TUTTE POLYNOMIALS [J].
JAEGER, F ;
VERTIGAN, DL ;
WELSH, DJA .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1990, 108 :35-53
[8]  
OXLEY JG, 1979, GRAPH THEORY RELATED, P329
[9]   THE COMPLEXITY OF RELIABILITY COMPUTATIONS IN PLANAR AND ACYCLIC GRAPHS [J].
PROVAN, JS .
SIAM JOURNAL ON COMPUTING, 1986, 15 (03) :694-702
[10]   COMPUTATIONAL-COMPLEXITY OF MATROID PROPERTIES [J].
ROBINSON, GC ;
WELSH, DJA .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1980, 87 (JAN) :29-45