INHIBITION OF HEAT-SHOCK PROTEIN HSP90-PP60(V-SRC) HETEROPROTEIN COMPLEX-FORMATION BY BENZOQUINONE ANSAMYCINS - ESSENTIAL ROLE FOR STRESS PROTEINS IN ONCOGENIC TRANSFORMATION

被引:1255
作者
WHITESELL, L
MIMNAUGH, EG
DECOSTA, B
MYERS, CE
NECKERS, LM
机构
[1] NCI,CLIN PHARMACOL BRANCH,BETHESDA,MD 20892
[2] NIDDKD,MED CHEM LAB,BETHESDA,MD 20892
关键词
GELDANAMYCIN; TYROSINE KINASE;
D O I
10.1073/pnas.91.18.8324
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The molecular mechanisms by which oncogenic tyrosine kinases induce cellular transformation are unclear. Herbimycin A, geldanamycin, and certain other benzoquinone ansamycins display an unusual capacity to revert tyrosine kinase-induced oncogenic transformation, As an approach to the study of v-src-mediated transformation, we examined ansamycin action in transformed cells and found that drug-induced reversion could be achieved without direct inhibition of src phosphorylating activity. To identify mechanisms other than kinase inhibition for drug-mediated reversion, we prepared a solid phase-immobilized geldanamycin derivative and affinity precipitated the molecular targets with which the drug interacted. In a range of cell lines, immobilized geldanamycin bound elements of a major class of heat shock protein (HSP90) in a stable and pharmacologically specific manner. Consistent with these binding data, we found that soluble geldanamycin and herbimycin A inhibited specifically the formation of a previously described src-HSP90 heteroprotein complex. A related benzoquinone ansamycin that failed to revert transformed cells did not inhibit the formation of this complex. These results demonstrate that HSP participation in multimolecular complex formation is required for src-mediated transformation and can provide a target for drug modulation.
引用
收藏
页码:8324 / 8328
页数:5
相关论文
共 36 条