COMPARATIVE DYNAMICS (SENSITIVITY ANALYSIS) IN OPTIMAL CONTROL THEORY

被引:58
作者
ONIKI, H [1 ]
机构
[1] HARVARD UNIV,DEPT ECON,CAMBRIDGE,MA 02138
关键词
D O I
10.1016/0022-0531(73)90050-1
中图分类号
F [经济];
学科分类号
02 ;
摘要
引用
收藏
页码:265 / 283
页数:19
相关论文
共 50 条
[11]   A time-delay model of diabetic population: Dynamics analysis, sensitivity, and optimal control [J].
Nasir, Hanis .
PHYSICA SCRIPTA, 2021, 96 (11)
[12]   Sensitivity analysis and optimal control of COVID-19 dynamics based on SEIQR model [J].
Hussain, Takasar ;
Ozair, Muhammad ;
Ali, Farhad ;
Rehman, Sajid ur ;
Assiri, Taghreed A. ;
Mahmoud, Emad E. .
RESULTS IN PHYSICS, 2021, 22
[14]   Comparative Sensitivity Analysis of Muscle Activation Dynamics [J].
Rockenfeller, Robert ;
Guenther, Michael ;
Schmitt, Syn ;
Goetz, Thomas .
COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2015, 2015
[15]   Sensitivity analysis of hyperbolic optimal control problems [J].
Adam Kowalewski ;
Irena Lasiecka ;
Jan Sokołowski .
Computational Optimization and Applications, 2012, 52 :147-179
[16]   Sensitivity analysis for discrete optimal control problems [J].
Marinkovic, Boban .
MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2006, 63 (03) :513-524
[17]   Continuous optimal control sensitivity analysis with AD [J].
Caillau, JB ;
Noailles, J .
AUTOMATIC DIFFERENTIATION OF ALGORITHMS: FROM SIMULATION TO OPTIMIZATION, 2002, :109-115
[18]   Sensitivity analysis for discrete optimal control problems [J].
Boban Marinković .
Mathematical Methods of Operations Research, 2006, 63 :513-524
[19]   Sensitivity analysis of hyperbolic optimal control problems [J].
Kowalewski, Adam ;
Lasiecka, Irena ;
Sokolowski, Jan .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2012, 52 (01) :147-179
[20]   Pattern dynamics of vegetation based on optimal control theory [J].
Hou, Li-Feng ;
Li, Li ;
Chang, Lili ;
Wang, Zhen ;
Sun, Gui-Quan .
NONLINEAR DYNAMICS, 2025, 113 (01) :1-23