STRANG-TYPE DIFFERENCE SCHEMES FOR MULTIDIMENSIONAL PROBLEMS

被引:26
作者
GOTTLIEB, D [1 ]
机构
[1] TEL AVIV UNIV,DEPT MATH SCI,TEL AVIV,ISRAEL
关键词
D O I
10.1137/0709054
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using Strang's idea, explicit difference schemes of second order accuracy and of optimal stability are obtained for solving partial differential equations in d dimensions.
引用
收藏
页码:650 / 661
页数:12
相关论文
共 10 条
[1]  
BURSTEIN SZ, 1967, NONLINEAR PARTIAL DI, P279
[2]  
Gourlay A. R., 1970, Journal of Computational Physics, V5, P229, DOI 10.1016/0021-9991(70)90061-6
[3]   A MULTISTEP FORMULATION OF OPTIMIZED LAX-WENDROFF METHOD FOR NONLINEAR HYPERBOLIC SYSTEMS IN 2 SPACE VARIABLES [J].
GOURLAY, AR ;
MORRIS, JL .
MATHEMATICS OF COMPUTATION, 1968, 22 (104) :715-&
[4]   FINITE-DIFFERENCE METHODS FOR NONLINEAR HYPERBOLIC SYSTEMS [J].
GOURLAY, AR ;
MORRIS, JL .
MATHEMATICS OF COMPUTATION, 1968, 22 (101) :28-&
[5]  
MARCHUK GI, 1970, 2 P S NUM SOL PART D
[6]   3-DIMENSIONAL SECOND-ORDER ACCURATE DIFFERENCE SCHEMES FOR DISCONTINUOUS HYDRODYNAMIC FLOWS [J].
RUBIN, EL ;
PREISER, S .
MATHEMATICS OF COMPUTATION, 1970, 24 (109) :57-&
[7]  
Strang W.G., 1968, SIAM J NUMER ANAL, V5, P506
[8]  
STRANG WG, 1963, ARCH RATIONAL MECH A, V12, P392
[9]  
STRANG WG, 1964, NUMER MATH, V13, P37
[10]  
ZWAS G, TO BE PUBLISHED