ON THE NONHOMOGENEOUS 2ND-ORDER EULER OPERATOR DIFFERENTIAL-EQUATION - EXPLICIT SOLUTIONS

被引:1
作者
JODAR, L
机构
关键词
D O I
10.1016/0024-3795(92)90322-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A variation-of-parameters method for solving the operator differential equation t2X(2) + tA1X(1) + A0X = F(t) is presented in terms of an appropriate pair of solutions of the algebraic operator equation Z2 + (A1 - I)Z + A0 = 0. Under this hypothesis, existence and uniqueness conditions for two-point boundary-value problems, as well as an explicit expression for the solutions in terms of data, are given.
引用
收藏
页码:145 / 156
页数:12
相关论文
共 12 条
[1]  
Coddington A., 1955, THEORY ORDINARY DIFF
[2]  
Eisenfeld J., 1973, J FUNCT ANAL, V12, P475
[3]  
Gohberg I., 1982, MATRIX POLYNOMIALS
[4]  
Hille E., 1948, AM MATH SOC C PUBL, V31
[5]  
Ince E., 1927, ORDINARY DIFFERENTIA
[9]  
Krein M. G., 1978, INTEGR EQUAT OPER TH, V1, P539
[10]  
Krein M. G., 1978, INTEGR EQUAT OPER TH, V1, P364