PATH INTEGRAL QUANTIZATION OF CERTAIN NONCENTRAL SYSTEMS WITH DYNAMIC SYMMETRIES

被引:27
作者
CARPIOBERNIDO, MV
机构
[1] National Institute of Physics, University of the Philippines, Diliman
关键词
D O I
10.1063/1.529244
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Path integral quantization is done for the five classes of potentials appearing in the systematic search for nonrelativistic systems with dynamical symmetries done by Makarov, Smorodinsky, Valiev, and Winternitz [Nuovo Cimento A 52, 1061 (1967)]. By an iterated application of Bateman's series formula to the polar coordinate path integral, an expansion is obtained on the Feynman kernel or the Green's function, whichever is possible, in terms of hypergeometric functions of the polar and azimuthal parts and a radial path integral is obtained whose evaluation yields the energy eigenvalues and the normalized wave functions. Special cases include the Hartmann potential and the ring-shaped oscillator.
引用
收藏
页码:1799 / 1807
页数:9
相关论文
共 30 条
[1]  
BASCO F, NIP PREPRINT
[2]  
BERNIDO CC, IN PRESS J PHYS A
[3]  
BOHM M, 1987, J MATH PHYS, V28, P1978, DOI 10.1063/1.527460
[4]   ALGEBRAIC-SOLUTION OF AN ANISOTROPIC RING-SHAPED OSCILLATOR [J].
BOSCHI, H ;
VAIDYA, AN .
PHYSICS LETTERS A, 1990, 145 (2-3) :69-73
[5]   ALGEBRAIC-SOLUTION OF AN ANISOTROPIC NONQUADRATIC POTENTIAL [J].
BOSCHIFILHO, H ;
VAIDYA, AN .
PHYSICS LETTERS A, 1990, 149 (7-8) :336-340
[6]   PATH INTEGRAL TREATMENT OF AN ANISOTROPIC NONQUADRATIC POTENTIAL [J].
CAI, JM ;
INOMATA, A .
PHYSICS LETTERS A, 1989, 141 (07) :315-320
[7]   SOLUTION OF A 3-BODY PROBLEM IN ONE DIMENSION [J].
CALOGERO, F .
JOURNAL OF MATHEMATICAL PHYSICS, 1969, 10 (12) :2191-&
[8]  
CARPIO MV, 1986, 1985 BIEL C PATH INT, P261
[9]   AN EXACT SOLUTION OF A RING-SHAPED OSCILLATOR PLUS A C SEC2-THETA/R2 POTENTIAL [J].
CARPIOBERNIDO, MV ;
BERNIDO, CC .
PHYSICS LETTERS A, 1989, 134 (07) :395-399
[10]   ALGEBRAIC TREATMENT OF A DOUBLE RING-SHAPED OSCILLATOR [J].
CARPIOBERNIDO, MV ;
BERNIDO, CC .
PHYSICS LETTERS A, 1989, 137 (1-2) :1-3