Reduction of Methanol Crossover in a Direct Methanol Fuel Cell by Using the Pt-Coated Electrolyte Membrane

被引:1
|
作者
Jung, Eun-Mi [1 ]
Rhee, Young-Woo [2 ]
Peck, Dong-Hyun [1 ]
Lee, Byoung-Rok [1 ]
Kim, Sang-Kyung [1 ]
Jung, Doohwan [1 ]
机构
[1] Korea Inst Energy Res, Adv Fuel Cell Res Ctr, 71-2 Jang Dong, Daejeon 305343, South Korea
[2] Chungnam Natl Univ, Dept Chem Engn, Daejeon 305764, South Korea
来源
关键词
Direct methanol fuel cell; Modification of the membrane; Pt-sputtered membrane; Methanol crossover;
D O I
10.5229/JKES.2008.11.1.001
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
A Pt-layer was deposited on the anode side of a Nafion membrane via a sputtering method in order to reduce methanol crossover in a direct methanol fuel cell (DMFC). The methanol permeationand the proton conductivity through the modified membranes were investigated. The performances of the direct methanol fuel cell were also tested using single cells with a Nafion membrane and the modified membranes. The Pt-layers on the membrane blocked both methanol crossover and proton transport through the membranes. Methanol permeability and proton conductivity decreased with an increase of the platinum layer thickness. At methanol concentration of 2 M, the DMFC employing the modified membrane with a platinum layer of 66 nm-thickness showed similar performance to that of a DMFC with a bare Nafion membrane in spite of the lower proton conductivity of the former. The maximum power density of the cell using the modified membrane with a platinum layer of 66 rim-thickness increased slightly while that of the cell with the bare membrane decreased abruptly when a methanol solution of 6 M was supplied.
引用
收藏
页码:1 / 5
页数:5
相关论文
共 50 条
  • [1] Reduction of methanol crossover in a flowing electrolyte-direct methanol fuel cell
    Colpan, C. Ozgur
    Ouellette, David
    Gluesen, Andreas
    Mueller, Martin
    Stolten, Detlef
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (33) : 21530 - 21545
  • [2] Suppression of methanol crossover in Pt-dispersed polymer electrolyte membrane for direct methanol fuel cells
    Uchida, H
    Mizuno, Y
    Watanabe, M
    CHEMISTRY LETTERS, 2000, (11) : 1268 - 1269
  • [3] Methanol crossover effect for direct methanol fuel cells: Applicability of methanol activity in polymer electrolyte membrane
    Yang, Jung Ho
    Bae, Young Chan
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2008, 155 (02) : B194 - B199
  • [4] Direct methanol fuel cells: determination of fuel crossover in a polymer electrolyte membrane
    Ramya, K
    Dhathathreyan, KS
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2003, 542 : 109 - 115
  • [5] A parametric study of methanol crossover in a flowing electrolyte-direct methanol fuel cell
    Kjeang, E
    Goldak, J
    Golriz, MR
    Gu, J
    James, D
    Kordesch, K
    JOURNAL OF POWER SOURCES, 2006, 153 (01) : 89 - 99
  • [6] Numerical simulation of methanol crossover in flowing electrolyte-direct methanol fuel cell
    Wu Yujing
    Zhou Hongxiu
    Zhang Ao
    Zhao Leqing
    JOURNAL OF POWER SOURCES, 2022, 519
  • [7] Measurement of methanol crossover in direct methanol fuel cell
    Hikita, S
    Yamane, K
    Nakajima, Y
    JSAE REVIEW, 2001, 22 (02): : 151 - 156
  • [8] Methanol crossover through PtRu/Nafion composite membrane for a direct methanol fuel cell
    Jung, E. H.
    Jung, U. H.
    Yang, T. H.
    Peak, D. H.
    Jung, D. H.
    Kim, S. H.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2007, 32 (07) : 903 - 907
  • [9] Design and simulation of a liquid electrolyte passive direct methanol fuel cell with low methanol crossover
    Cai, Weiwei
    Li, Songtao
    Yan, Liang
    Feng, Ligang
    Zhang, Jing
    Liang, Liang
    Xing, Wei
    Liu, Changpeng
    JOURNAL OF POWER SOURCES, 2011, 196 (18) : 7616 - 7626
  • [10] A Nafion-Ceria Composite Membrane Electrolyte for Reduced Methanol Crossover in Direct Methanol Fuel Cells
    Velayutham, Parthiban
    Sahu, Akhila K.
    Parthasarathy, Sridhar
    ENERGIES, 2017, 10 (02):