Experiments were designed to examine the sensitivity of various bone parameters of laying hens to different levels of calcium intake (2.0, 2.5, 3.0, 3.5, 4.0, and 4.5 g/day). All birds were individually fed 85 g of feed daily. Dry femur weight (DW) and absolute ash weight (AW) of the whole bone (WB), cortical bone (CB), or medullary bone (MB) were reliable indicators of bone status affected by changes in calcium intake. Expressing AW as a percentage of fat-free dry matter (AW/FFDM) or a percentage of dry weight (AW/DW) showed no effect due to different levels of calcium intake. The correlations between CB-AW/FFDM or CB-AW/DW with calcium intake were .05 and -.07, respectively. Bone ash concentration and bone ash per unit volume (AW/VOL, mg/mL) was very sensitive to different levels of calcium intake; the values increased linearly as calcium intake increased from 2 to 4.5 g/day (WB = 316 to 403; CB = 479 to 571; MB = 133 to 213). Bone-breaking force (BBF), bone-bending moment (BBM), bone stress, and BBF/100 g body weight were equally sensitive in indicating bone mineral reserves due to different levels of calcium intake. Regression equations showed that AW/VOL alone (true for WB, CB, and MB) was capable of predicting BBM well (all with R2 > .82). However, AW/FFDM did not have predictive power over BBM (CB-AW/FFDM:R2 < .001). Using daily calcium intake as the predictor, regression lines for BBM, WB-AW, WB-AW/VOL, CB-AW/VOL, and MB-AW/VOL yielded significant slopes of 1.24 kg-cm, .01 g, 17.11 mg/mL, 16.34 mg/mL, and 16.42 mg/mL, respectively.