AMINO-TERMINUS AND THE FIRST 4 MEMBRANE-SPANNING SEGMENTS OF THE ARABIDOPSIS K+ CHANNEL KAT1 CONFER INWARD-RECTIFICATION PROPERTY OF PLANT-ANIMAL CHIMERIC CHANNELS

被引:42
作者
CAO, YW
CRAWFORD, NM
SCHROEDER, JI
机构
[1] UNIV CALIF SAN DIEGO, DEPT BIOL 0116, LA JOLLA, CA 92093 USA
[2] UNIV CALIF SAN DIEGO, CTR MOLEC GENET, LA JOLLA, CA 92093 USA
关键词
D O I
10.1074/jbc.270.30.17697
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The Arabidopsis hyperpolarization-activated (inward-rectifying) K+ channel KAT1 is structurally more similar to animal depolarization-activated (outward-rectifying) K+ channels than to animal hyperpolarization-activated K+ channels. To gain insight into the structural basis for the opposite voltage dependences of plant inward-rectifying and animal outward-rectifying K+ channels, we constructed recombinant chimeric channels between the hyperpolarization-activated K+ channel KAT1 and a Xenopus depolarization-activated K+ channel. We report here that two of the chimeric constructs, which contain the first third of the KAT1 sequence, including the first four membrane-spanning segments (S1-S4) and the linker sequence between the fourth and fifth membrane-spanning segments, express functional channels that retain activation by hyperpolarization, but not depolarization. These two chimeric channels are no longer selective for K+. The chimeras are selective for cations over anions and are permeable to Ca2+. Therefore, unlike animal hyperpolarization-activated K+ channels, in which the carboxyl terminus is important for inward rectification induced by Mg2+ and polyamine block, the plant KAT1 channel has its major determinants for inward rectification in the amino-terminal region, which ends at the end of the S4-S5 linker.
引用
收藏
页码:17697 / 17701
页数:5
相关论文
共 32 条
[1]   FUNCTIONAL EXPRESSION OF A PROBABLE ARABIDOPSIS-THALIANA POTASSIUM CHANNEL IN SACCHAROMYCES-CEREVISIAE [J].
ANDERSON, JA ;
HUPRIKAR, SS ;
KOCHIAN, LV ;
LUCAS, WJ ;
GABER, RF .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (09) :3736-3740
[2]   VOLTAGE-DEPENDENT GATING OF IONIC CHANNELS [J].
BEZANILLA, F ;
STEFANI, E .
ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE, 1994, 23 :819-846
[3]   FUNCTIONAL BASES FOR INTERPRETING AMINO-ACID-SEQUENCES OF VOLTAGE-DEPENDENT K+-CHANNELS [J].
BROWN, AM .
ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE, 1993, 22 :173-198
[4]   A FAMILY OF PUTATIVE POTASSIUM CHANNEL GENES IN DROSOPHILA [J].
BUTLER, A ;
WEI, A ;
BAKER, K ;
SALKOFF, L .
SCIENCE, 1989, 243 (4893) :943-947
[5]  
CAO Y, 1995, IN PRESS PLANT PHYSL
[6]  
CAO YW, 1992, PLANT CELL, V4, P961, DOI 10.1105/tpc.4.8.961
[7]   ATOMIC SCALE STRUCTURE AND FUNCTIONAL MODELS OF VOLTAGE-GATED POTASSIUM CHANNELS [J].
DURELL, SR ;
GUY, HR .
BIOPHYSICAL JOURNAL, 1992, 62 (01) :238-250
[8]   STRONG VOLTAGE-DEPENDENT INWARD RECTIFICATION OF INWARD RECTIFIER K+ CHANNELS IS CAUSED BY INTRACELLULAR SPERMINE [J].
FAKLER, B ;
BRANDLE, U ;
GLOWATZKI, E ;
WEIDEMANN, S ;
ZENNER, HP ;
RUPPERSBERG, JP .
CELL, 1995, 80 (01) :149-154
[9]  
Higuchi R., 1990, PCR PROTOCOLS GUIDE, P177
[10]   CLONING AND EXPRESSION OF AN INWARDLY RECTIFYING ATP-REGULATED POTASSIUM CHANNEL [J].
HO, K ;
NICHOLS, CG ;
LEDERER, WJ ;
LYTTON, J ;
VASSILEV, PM ;
KANAZIRSKA, MV ;
HEBERT, SC .
NATURE, 1993, 362 (6415) :31-38