A NONCONFORMING FINITE-ELEMENT METHOD FOR A SINGULARLY PERTURBED BOUNDARY-VALUE PROBLEM

被引:5
作者
ADAM, D [1 ]
FELGENHAUER, A [1 ]
ROOS, HG [1 ]
STYNES, M [1 ]
机构
[1] NATL UNIV IRELAND UNIV COLL CORK,DEPT MATH,CORK,IRELAND
关键词
SINGULAR PERTURBATION; FINITE ELEMENT METHOD; UNIFORM CONVERGENCE;
D O I
10.1007/BF02238077
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We analyze a new nonconforming Petrov-Galerkin finite element method for solving linear singularly perturbed two-point boundary value problems without turning points. The method is shown to be convergent, uniformly in the perturbation parameter, of order h1/2 in a norm slightly stronger than the energy norm. Our proof uses a new abstract convergence theorem for Petrov-Galerkin finite element methods.
引用
收藏
页码:1 / 25
页数:25
相关论文
共 19 条
[1]  
BROOKS AN, 1980, 3RD P INT C FIN EL M
[2]  
Doolan EP., 1980, UNIFORM NUMERICAL ME
[3]  
FELGENHAUER A, 1988, THESIS TH MAGDEBURG
[4]  
FELGENHAUER A, UNPUB NOVEL NONCONFO
[5]  
Hemker P.W., 1977, NUMERICAL STUDY STIF
[6]  
HUGHES TJR, 1980, AMP, V34
[7]  
JOHNSON C, 1986, FINITE ELEMENTS FLUI, V6, P251
[8]  
Johnson C., 1987, NUMERICAL SOLUTION P
[9]  
Morton K. W., 1987, State of the Art in Numerical Analysis. Proceedings of the Joint IMA/SIAM Conference, P645
[10]   AN ANALYSIS OF A SUPERCONVERGENCE RESULT FOR A SINGULARLY PERTURBED BOUNDARY-VALUE PROBLEM [J].
ORIORDAN, E ;
STYNES, M .
MATHEMATICS OF COMPUTATION, 1986, 46 (173) :81-92