EXACT SOLUTION OF THE GENERAL NONINTERSECTING STRING MODEL

被引:2
作者
DEVEGA, HJ
GIAVARINI, G
机构
[1] Laboratoire de Physique Théorique et Hautes Energies, Paris
关键词
D O I
10.1016/0550-3213(93)90529-X
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We present a thorough analysis of the non-intersecting string (NIS) model and its exact solution. This is an integrable q-states vertex model describing configurations of non-intersecting polygons on the lattice. The exact eigenvalues of the transfer matrix are found by the analytic Bethe ansatz. The Bethe ansatz equations thus found are shown to be equivalent to those for a mixed spin model involving both 1/2 and infinite spin. This indicates that the NIS model provides a representation of the quantum group SU(2)q (Absolute value of q not-equal) corresponding to spins s = 1/2 and s = infinity The partition function and the excitations in the thermodynamic limit are computed.
引用
收藏
页码:550 / 576
页数:27
相关论文
共 25 条
[1]  
[Anonymous], 1996, TABLES INTEGRALS SER
[2]   HEISENBERG MAGNET WITH AN ARBITRARY SPIN AND ANISOTROPIC CHIRAL FIELD [J].
BABUJIAN, HM ;
TSVELICK, AM .
NUCLEAR PHYSICS B, 1986, 265 (01) :24-44
[3]   FACTORIZED U(N) SYMMETRIC S-MATRICES IN 2 DIMENSIONS [J].
BERG, B ;
KAROWSKI, M ;
WEISZ, P ;
KURAK, V .
NUCLEAR PHYSICS B, 1978, 134 (01) :125-132
[4]  
De Vega H. J., 1990, Nuclear Physics B, Proceedings Supplements, V18A, P229, DOI 10.1016/0920-5632(90)90651-A
[5]  
Deguchi T., 1989, ADV STUDIES PURE MAT, V19, P193
[6]   METHOD FOR CALCULATING FINITE SIZE CORRECTIONS IN BETHE ANSATZ SYSTEMS - HEISENBERG CHAIN AND 6-VERTEX MODEL [J].
DEVEGA, HJ ;
WOYNAROVICH, F .
NUCLEAR PHYSICS B, 1985, 251 (03) :439-456
[7]   YANG-BAXTER ALGEBRAS, INTEGRABLE THEORIES AND QUANTUM GROUPS [J].
DEVEGA, HJ .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1989, 4 (10) :2371-2463
[8]   THE INTEGRABLE XXZ HEISENBERG-MODEL WITH ARBITRARY SPIN - CONSTRUCTION OF THE HAMILTONIAN, THE GROUND-STATE CONFIGURATION AND CONFORMAL PROPERTIES [J].
FRAHM, H ;
YU, NC ;
FOWLER, M .
NUCLEAR PHYSICS B, 1990, 336 (03) :396-434
[9]   THERMODYNAMICS OF HEISENBERG-ISING RING FOR DELTA-NOT-GREATER-THAN-1 [J].
GAUDIN, M .
PHYSICAL REVIEW LETTERS, 1971, 26 (21) :1301-+
[10]   EXACT SOLUTION OF THE INTEGRABLE XXZ HEISENBERG-MODEL WITH ARBITRARY SPIN .1. THE GROUND-STATE AND THE EXCITATION SPECTRUM [J].
KIRILLOV, AN ;
RESHETIKHIN, NY .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1987, 20 (06) :1565-1585