Fruit recognition from images using deep learning

被引:174
作者
Muresan, Horea [1 ]
Oltean, Mihai [2 ]
机构
[1] Babes Bolyai Univ, Fac Math & Comp Sci, Cluj Napoca, Romania
[2] 1 Decembrie 1918 Univ Alba Iulia, Fac Exact Sci & Engn, Alba Iulia, Romania
关键词
deep learning; object recognition; computer vision; fruits dataset; image processing;
D O I
10.2478/ausi-2018-0002
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper we introduce a new, high-quality, dataset of images containing fruits. We also present the results of some numerical experiment for training a neural network to detect fruits. We discuss the reason why we chose to use fruits in this project by proposing a few applications that could use such classifier.
引用
收藏
页码:26 / 42
页数:17
相关论文
共 25 条
  • [1] Arivazhagan S., 2010, J EMERG TRENDS COMPU, V1, P90
  • [2] Bargoti Suchet, 2017, 2017 IEEE International Conference on Robotics and Automation (ICRA), P3626, DOI 10.1109/ICRA.2017.7989417
  • [3] Data synthesis methods for semantic segmentation in agriculture: A Capsicum annuum dataset
    Barth, R.
    IJsselmuiden, J.
    Hemming, J.
    Van Henten, E. J.
    [J]. COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2018, 144 : 284 - 296
  • [4] Active contours without edges
    Chan, TF
    Vese, LA
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2001, 10 (02) : 266 - 277
  • [5] Cheng H, 2017, J IMAGING, V3, DOI 10.3390/jimaging3010006
  • [6] Ciresan D.C., 2011, P INT JOINT C ARTIFI
  • [7] Ciresan D, 2012, PROC CVPR IEEE, P3642, DOI 10.1109/CVPR.2012.6248110
  • [8] Clevert D.A., 2016, COMPUT SCI, DOI DOI 10.3233/978-1-61499-672-9-1760
  • [9] Fruit Detectability Analysis for Different Camera Positions in Sweet-Pepper
    Hemming, Jochen
    Ruizendaal, Jos
    Hofstee, Jan Willem
    van Henten, Eldert J.
    [J]. SENSORS, 2014, 14 (04) : 6032 - 6044
  • [10] Kapach K., 2017, J IMAGING, V3, P4