共 15 条
A Stable Gaussian Fitting Procedure for the Parameterization of Remote Sensed Thermal Images
被引:20
作者:
Anniballe, Roberta
[1
]
Bonafoni, Stefania
[2
]
机构:
[1] Univ Roma La Sapienza, Dept Informat Engn Elect & Telecommun, I-00184 Rome, Italy
[2] Univ Perugia, Dept Engn, I-06125 Perugia, Italy
来源:
关键词:
D O I:
10.3390/a8020082
中图分类号:
TP18 [人工智能理论];
学科分类号:
081104 ;
0812 ;
0835 ;
1405 ;
摘要:
An image analysis procedure based on a two dimensional Gaussian fitting is presented and applied to satellite maps describing the surface urban heat island (SUHI). The application of this fitting technique allows us to parameterize the SUHI pattern in order to better understand its intensity trend and also to perform quantitative comparisons among different images in time and space. The proposed procedure is computationally rapid and stable, executing an initial guess parameter estimation by a multiple regression before the iterative nonlinear fitting. The Gaussian fit was applied to both low and high resolution images (1 km and 30 m pixel size) and the results of the SUHI parameterization shown. As expected, a reduction of the correlation coefficient between the map values and the Gaussian surface was observed for the image with the higher spatial resolution due to the greater variability of the SUHI values. Since the fitting procedure provides a smoothed Gaussian surface, it has better performance when applied to low resolution images, even if the reliability of the SUHI pattern representation can be preserved also for high resolution images.
引用
收藏
页码:82 / 91
页数:10
相关论文