WHEN DOES A SUPERNILPOTENT RADICAL ESSENTIALLY SPLIT OFF

被引:7
作者
BIRKENMEIER, GF
机构
[1] Department of Mathematics, University of Southwestern Louisiana
关键词
D O I
10.1006/jabr.1995.1047
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:49 / 60
页数:12
相关论文
共 31 条
[1]   A GENERALIZATION OF FPF RINGS [J].
BIRKENMEIER, GF .
COMMUNICATIONS IN ALGEBRA, 1989, 17 (04) :855-884
[2]   BAER RINGS AND QUASICONTINUOUS RINGS HAVE A MDSN [J].
BIRKENMEIER, GF .
PACIFIC JOURNAL OF MATHEMATICS, 1981, 97 (02) :283-292
[3]   DECOMPOSITIONS OF BAER-LIKE RINGS [J].
BIRKENMEIER, GF .
ACTA MATHEMATICA HUNGARICA, 1992, 59 (3-4) :319-326
[4]   RINGS WHICH ARE ESSENTIALLY SUPERNILPOTENT [J].
BIRKENMEIER, GF .
COMMUNICATIONS IN ALGEBRA, 1994, 22 (03) :1063-1082
[5]   IDEMPOTENTS AND COMPLETELY SEMIPRIME IDEALS [J].
BIRKENMEIER, GF .
COMMUNICATIONS IN ALGEBRA, 1983, 11 (06) :567-580
[6]   SELF-INJECTIVE RINGS AND MINIMAL DIRECT SUMMAND CONTAINING NILPOTENTS [J].
BIRKENMEIER, GF .
COMMUNICATIONS IN ALGEBRA, 1976, 4 (08) :705-721
[7]  
BIRKENMEIER GF, 1987, P AM MATH SOC, V100, P8
[8]   A DECOMPOSITION OF RINGS GENERATED BY FAITHFUL CYCLIC MODULES [J].
BIRKENMEIER, GF .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1989, 32 (03) :333-339
[9]   THE MAXIMAL REGULAR IDEAL OF A RING [J].
BROWN, B ;
MCCOY, NH .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1950, 1 (02) :165-171
[10]   RINGS IN WHICH EVERY COMPLEMENT RIGHT IDEAL IS A DIRECT SUMMAND [J].
CHATTERS, AW ;
HAJARNAVIS, CR .
QUARTERLY JOURNAL OF MATHEMATICS, 1977, 28 (109) :61-80