CIRCLE MAPS WITH SYMMETRY-BREAKING PERTURBATIONS

被引:3
作者
ERIKSSON, AB
EINARSSON, T
OSTLUND, S
机构
[1] Institute of Theoretical Physics, Chalmers University of Technology
来源
PHYSICA D | 1992年 / 57卷 / 1-2期
关键词
D O I
10.1016/0167-2789(92)90088-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Renormalization group methods are used to describe the transition to chaos that occurs in dissipative quasiperiodic systems in the presence of a small subharmonic perturbation. This is accomplished by studying the circle map with the symmetry theta --> theta + 2-pi/n, and looking at crossover exponents for perturbations obeying the usual 2-pi symmetry. In order to interpret these exponents, the standard renormalization group analysis must be extended to include extra functions. This has been worked out in detail for the case n = 2.
引用
收藏
页码:58 / 84
页数:27
相关论文
共 16 条
[1]   QUASI-PERIODICITY IN DISSIPATIVE SYSTEMS - A RENORMALIZATION-GROUP ANALYSIS [J].
FEIGENBAUM, MJ ;
KADANOFF, LP ;
SHENKER, SJ .
PHYSICA D, 1982, 5 (2-3) :370-386
[2]   QUANTITATIVE UNIVERSALITY FOR A CLASS OF NON-LINEAR TRANSFORMATIONS [J].
FEIGENBAUM, MJ .
JOURNAL OF STATISTICAL PHYSICS, 1978, 19 (01) :25-52
[3]   UNIVERSAL METRIC PROPERTIES OF NON-LINEAR TRANSFORMATIONS [J].
FEIGENBAUM, MJ .
JOURNAL OF STATISTICAL PHYSICS, 1979, 21 (06) :669-706
[4]   2-DIMENSIONAL MEASURE-PRESERVING MAPPINGS [J].
GREENE, JM .
JOURNAL OF MATHEMATICAL PHYSICS, 1968, 9 (05) :760-&
[5]   METHOD FOR DETERMINING A STOCHASTIC TRANSITION [J].
GREENE, JM .
JOURNAL OF MATHEMATICAL PHYSICS, 1979, 20 (06) :1183-1201
[6]   HIGHER-ORDER FIXED-POINTS OF THE RENORMALIZATION OPERATOR FOR INVARIANT CIRCLES [J].
GREENE, JM ;
MAO, JM .
NONLINEARITY, 1990, 3 (01) :69-78
[7]  
GREENE JM, 1990, P CHAOS AUSTR C
[8]   FRACTAL BOUNDARY FOR THE EXISTENCE OF INVARIANT CIRCLES FOR AREA-PRESERVING MAPS - OBSERVATIONS AND RENORMALIZATION EXPLANATION [J].
KETOJA, JA ;
MACKAY, RS .
PHYSICA D, 1989, 35 (03) :318-334
[9]   RENORMALIZATION IN A CIRCLE MAP WITH 2 INFLECTION POINTS [J].
KETOJA, JA .
PHYSICA D, 1992, 55 (1-2) :45-68
[10]   EQUIVARIANT UNIVERSALITY CLASSES [J].
MACKAY, RS .
PHYSICS LETTERS A, 1984, 106 (03) :99-100