Orthogonal stability of mixed type additive-cubic functional equations in multi-Banach spaces

被引:0
作者
Murali, Ramdoss [1 ]
Pinelas, Sandra [2 ]
Raj, Aruldass Antony [1 ]
机构
[1] Sacred Heart Coll Autonomous, PG & Res Dept Math, Tirupattur 635601, Tamil Nadu, India
[2] Acad Mil, Dept Ciencias Exatas & Engn, P-2720113 Amadora, Portugal
关键词
Hyers-Ulam stability; multi-Banach spaces; orthogonally additive-cubic functional equation; fixed point method;
D O I
10.1515/dema-2018-0012
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we establish the Hyers-Ulam orthogonal stability of the mixed type additive-cubic functional equation in multi-Banach spaces.
引用
收藏
页码:106 / 111
页数:6
相关论文
共 21 条
  • [1] Alizadeh S, 2015, INT J NONLINEAR ANAL, V7, P63
  • [2] Aoki T., 1950, J MATH SOC JAPAN, V2, P64, DOI 10.2969/jmsj/00210064
  • [3] Brzdek J., 2018, ULAM STABILITY OPERA
  • [4] RECENT DEVELOPMENTS OF THE CONDITIONAL STABILITY OF THE HOMOMORPHISM EQUATION
    Brzdek, Janusz
    Fechner, Wlodzimierz
    Moslehian, Mohammad Sal
    Sikorska, Justyna
    [J]. BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2015, 9 (03): : 278 - 326
  • [5] Czerwik S., 2002, FUNCTIONAL EQUATIONS
  • [6] Stability of mappings on multi-normed spaces
    Dales, H. G.
    Moslehian, Mohammad Sal
    [J]. GLASGOW MATHEMATICAL JOURNAL, 2007, 49 : 321 - 332
  • [7] Hyers D.H., 1998, STABILITY FUNCTIONAL
  • [8] On the stability of the linear functional equation
    Hyers, DH
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1941, 27 : 222 - 224
  • [9] The generalized Hyers-Ulam-Rassias stability of a cubic functional equation
    Jun, KW
    Kim, HM
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 274 (02) : 867 - 878
  • [10] Quartic functional equations
    Lee, SH
    Im, SM
    Hwang, IS
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 307 (02) : 387 - 394