THE TRANSPORT OF 2 IRON CHELATORS, DESFERRIOXAMINE B AND L1, ACROSS CACO-2 MONOLAYERS

被引:20
作者
HAMILTON, KO [1 ]
STALLIBRASS, L [1 ]
HASSAN, I [1 ]
JIN, Y [1 ]
HALLEUX, C [1 ]
MACKAY, M [1 ]
机构
[1] CIBA GEIGY AG,DIV PHARMACEUT,CH-4002 BASEL,SWITZERLAND
关键词
DESFERRIOXAMINE B; L1; CACO-2; IRON CHELATOR; TRANSPORT;
D O I
10.1111/j.1365-2141.1994.tb04841.x
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
The transport of two iron chelators, desferrioxamine B (DFO) and L1 (1,2-dimethyl-3 hydroxypyridin-4-one) has been studied in vitro using the human adenocarcinoma cell line, Caco-2. The transport of DFO and L1 has also been compared with that of their iron-bound complexes, ferrioxamine (FO) and L1(3)-Fe, respectively. We report an apparent permeability coefficient (P-app) value for DFO of 0.170x10(-7) +/-0.080 cm s(-1). The P-app value of L1 was 1.297 x 10(-5) +/-0.133 cm s(-1). The P-app values of their iron bound complexes FO and L1(3)-Fe are 0.230 x 10(-7) +/-0.065 cm s(-1) and 2.356 x 10(-6) +/-0.365 cm s(-1), respectively. We have shown that the transport of DFO and FO is similar in the Caco-2 cell system. The transport of L1, however, is greatly reduced when complexed to iron. The value for total uptake after 60 min for DFO into the Caco-2 cells was 1.49+/-0.09x10(-3) mmol per filter. The values for total uptake after 60 min for L1 and L1(3)-Fe were 0.37+/-0.03 nmol per filter and 0.04+/-0.01 nmol per filter, respectively. Our results indicate that the poor oral bioavailability of DFO can be attributed to the tow epithelial permeability of the molecule coupled with its size (mol wt 656). In contrast, the oral bioavailability observed with L1 is due to the high lipophilicity and low molecular weight (mol wt 139) of the molecule. We believe that these differences between the two molecules account for LI being better orally absorbed than DFO.
引用
收藏
页码:851 / 857
页数:7
相关论文
共 50 条
  • [31] Characterization of mefenamic acid-guaiacol ester: Stability and transport across Caco-2 cell monolayers
    Tantishaiyakul, V
    Wiwattanawongsa, K
    Pinsuwan, S
    Kasiwong, S
    Phadoongsombut, N
    Kaewnopparat, S
    Kaewnopparat, N
    Rojanasakul, Y
    PHARMACEUTICAL RESEARCH, 2002, 19 (07) : 1013 - 1018
  • [32] Acetylation of hydroxytyrosol enhances its transport across differentiated Caco-2 cell monolayers
    Mateos, R.
    Pereira-Caro, G.
    Saha, S.
    Cert, R.
    Redondo-Horcajo, M.
    Bravo, L.
    Kroon, P. A.
    FOOD CHEMISTRY, 2011, 125 (03) : 865 - 872
  • [33] Transepithelial transport of 6-O-caffeoylsophorose across Caco-2 cell monolayers
    Hoang Lan Phuong
    Qiu, Ju
    Kuwahara, Takashi
    Fukui, Keiichi
    Yoshiyama, Kayo
    Matsugano, Kazusato
    Terahara, Norihiko
    Matsui, Toshiro
    FOOD CHEMISTRY, 2013, 138 (01) : 101 - 106
  • [34] Determination of the enantioselectivity of six chiral aryloxy aminopropanol drugs transport across Caco-2 cell monolayers
    Tian, Ye
    He, Ying
    Hu, Haihong
    Wang, Lu
    Zeng, Su
    ACTA PHARMACEUTICA SINICA B, 2012, 2 (02) : 168 - 173
  • [35] Paracellular calcium transport across Caco-2 and HT29 cell monolayers
    A. Blais
    Pierre Aymard
    Bernard Lacour
    Pflügers Archiv, 1997, 434 : 300 - 305
  • [36] Transepithelial transport of α-lipoic acid across human intestinal Caco-2 cell monolayers
    Takaishi, Naoki
    Yoshida, Kazutaka
    Satsu, Hideo
    Shimizu, Makoto
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2007, 55 (13) : 5253 - 5259
  • [37] CACO-2 CELL-LINE - A SYSTEM FOR STUDYING INTESTINAL IRON TRANSPORT ACROSS EPITHELIAL-CELL MONOLAYERS
    ALVAREZHERNANDEZ, X
    NICHOLS, GM
    GLASS, J
    BIOCHIMICA ET BIOPHYSICA ACTA, 1991, 1070 (01) : 205 - 208
  • [38] In vitro intestinal transport of oligomeric procyanidins (DP 2 to 4) across monolayers of Caco-2 cells
    Zumdick, Stefanie
    Deters, Alexandra
    Hensel, Andreas
    FITOTERAPIA, 2012, 83 (07) : 1210 - 1217
  • [39] Transport characteristics of peptidomimetics. Effect of the pyrrolinone bioisostere on transport across Caco-2 cell monolayers
    Sudoh, M
    Pauletti, GM
    Yao, WQ
    Moser, W
    Yokoyama, A
    Pasternak, A
    Sprengeler, PA
    Smith, AB
    Hirschmann, R
    Borchardt, RT
    PHARMACEUTICAL RESEARCH, 1998, 15 (05) : 719 - 725
  • [40] Effect of Rhamnolipids on Permeability Across Caco-2 Cell Monolayers
    Wallace, Charity J.
    Medina, Scott H.
    ElSayed, Mohamed E. H.
    PHARMACEUTICAL RESEARCH, 2014, 31 (04) : 887 - 894