ON TWO WAYS TO LOOK FOR MUTUALLY UNBIASED BASES

被引:1
作者
Kibler, Maurice R. [1 ,2 ]
机构
[1] Univ Claude Bernard Lyon 1, Univ Lyon, 4 Rue Enrico Fermi, F-69622 Villeurbanne, France
[2] CNRS IN2P3, Inst Phys Nucl, F-69622 Villeurbanne, France
关键词
finite-dimensional quantum mechanics; quantum information; MUBs; SIC POVMs; equiangular lines; equiangular vectors;
D O I
10.14311/AP.2014.54.0124
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Two equivalent ways of looking for mutually unbiased bases are discussed in this note. The passage from the search for d+1 mutually unbiased bases in C-d to the search for d(d+ 1) vectors in C-d2 satisfying constraint relations is clarified. Symmetric informationally complete positive-operator-valued measures are briefly discussed in a similar vein.
引用
收藏
页码:124 / 126
页数:3
相关论文
共 10 条
[1]   A unified approach to SIC-POVMs and MUBs [J].
Albouy, Olivier ;
Kibler, Maurice R. .
JOURNAL OF RUSSIAN LASER RESEARCH, 2007, 28 (05) :429-438
[2]  
Appleby D. M., ARXIV13120555V1
[3]   Numerical evidence for the maximum number of mutually unbiased bases in dimension six [J].
Butterley, Paul ;
Hall, William .
PHYSICS LETTERS A, 2007, 369 (1-2) :5-8
[4]   ON MUTUALLY UNBIASED BASES [J].
Durt, Thomas ;
Englert, Berthold-Georg ;
Bengtsson, Ingemar ;
Zyczkowski, Karol .
INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2010, 8 (04) :535-640
[5]   Equiangular lines, mutually unbiased bases, and spin models [J].
Godsil, Chris ;
Roy, Aidan .
EUROPEAN JOURNAL OF COMBINATORICS, 2009, 30 (01) :246-262
[6]   Equiangular Vectors Approach to Mutually Unbiased Bases [J].
Kibler, Maurice R. .
ENTROPY, 2013, 15 (05) :1726-1737
[7]   An angular momentum approach to quadratic Fourier transform, Hadamard matrices, Gauss sums, mutually unbiased bases, the unitary group and the Pauli group [J].
Kibler, Maurice R. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (35)
[8]   ON THE IMPOSSIBILITY TO EXTEND TRIPLES OF MUTUALLY UNBIASED PRODUCT BASES IN DIMENSION SIX [J].
Mcnulty, Daniel ;
Weigert, Stefan .
INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2012, 10 (05)
[9]   Feynman's path integral and mutually unbiased bases [J].
Tolar, J. ;
Chadzitaskos, G. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (24)
[10]   Quantum systems with finite Hilbert space [J].
Vourdas, A .
REPORTS ON PROGRESS IN PHYSICS, 2004, 67 (03) :267-320