IMPROVED EDGE-COLORING ALGORITHMS FOR PLANAR GRAPHS

被引:14
作者
CHROBAK, M
NISHIZEKI, T
机构
[1] UNIV CALIF RIVERSIDE, DEPT MATH & COMP SCI, RIVERSIDE, CA 92521 USA
[2] TOHOKU UNIV, DEPT ELECT COMMUN, SENDAI, MIYAGI 980, JAPAN
来源
JOURNAL OF ALGORITHMS-COGNITION INFORMATICS AND LOGIC | 1990年 / 11卷 / 01期
关键词
D O I
10.1016/0196-6774(90)90032-A
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We consider the problem of edge-coloring planar graphs. It is known that a planar graph G with maximum degree Δ ≥ 8 can be colored with Δ colors. We present two algorithms which find such a coloring when Δ ≥ 9. The first one is a sequential O(n log n) time algorithm. The other one is a parallel EREW PRAM algorithm which works in time O(log3n) and uses O(n) processors. © 1990.
引用
收藏
页码:102 / 116
页数:15
相关论文
共 27 条
[1]   EVERY PLANAR MAP IS 4 COLORABLE [J].
APPEL, K ;
HAKEN, W .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 82 (05) :711-712
[2]  
Berge C., 1973, GRAPHS HYPERGRAPHS
[3]   COLORING PLANAR GRAPHS IN PARALLEL [J].
BOYAR, JF ;
KARLOFF, HJ .
JOURNAL OF ALGORITHMS-COGNITION INFORMATICS AND LOGIC, 1987, 8 (04) :470-479
[4]   A LINEAR 5-COLORING ALGORITHM OF PLANAR GRAPHS [J].
CHIBA, N ;
NISHIZEKI, T ;
SAITO, N .
JOURNAL OF ALGORITHMS-COGNITION INFORMATICS AND LOGIC, 1981, 2 (04) :317-327
[5]   FAST ALGORITHMS FOR EDGE-COLORING PLANAR GRAPHS [J].
CHROBAK, M ;
YUNG, MT .
JOURNAL OF ALGORITHMS-COGNITION INFORMATICS AND LOGIC, 1989, 10 (01) :35-51
[6]   ON EDGE COLORING BIPARTITE GRAPHS [J].
COLE, R ;
HOPCROFT, J .
SIAM JOURNAL ON COMPUTING, 1982, 11 (03) :540-546
[7]  
COLE R, 1986, 18TH P ANN ACM S THE, P206
[8]  
Fiorini S, 1977, EDGE COLOURINGS GRAP
[9]   ON LINEAR-TIME ALGORITHMS FOR 5-COLORING PLANAR GRAPHS [J].
FREDERICKSON, GN .
INFORMATION PROCESSING LETTERS, 1984, 19 (05) :219-224
[10]   ALGORITHMS FOR EDGE COLORING BIPARTITE GRAPHS AND MULTIGRAPHS [J].
GABOW, HN ;
KARIV, O .
SIAM JOURNAL ON COMPUTING, 1982, 11 (01) :117-129