This review summarizes pathobiochemical aspects of diseases, in which cytoskeletal components play a crucial role in pathogenesis. An attempt to classify the disorders on the basis of phenotypic changes that occur in microfilaments, intermediate filaments and microtubuli was unsuccessful. Three groups of disorders are presented: 1. cytoplasmic inclusions in specific diseases (merely descriptive); 2. diseases with genetic defects in cytoskeletal proteins (a chain of causality from defect to phenotype, in some cases with large gaps); 3. diseases with suspected involvement of cytoskeleton (hypothetical causal chain). Microfilaments are involved in certain pathogenetic processes on account of defects in their associated proteins; in Duchenne muscular dystrophy, dystrophin is defective, while the defective protein in Rett syndrome is synapsin. Defects in spectrin and membrane anchor proteins lead to disorders of the red cell membrane skeleton (congenital haemolytic anaemias). Intermediate filaments accumulate in some types of cytoplasmic inclusions, together with ubiquitin (Mallory bodies, desmin accumulation in some myopathies and others). A pathogenetic interpretation of this phenomenon is lacking. A genetic defect in certain types of keratin is the cause of epidermolysis bullosa. Interesting preliminary results are reviewed that reveal the crucial role of cytoskeletal components in a further group of diseases (intrahepatic cholestasis, Alzheimer disease, pemphigus). These disorders are currently under investigation, or are of theoretical interest with respect to the cytoskeleton. Specific reactions of cytoskeletal components in serum, which might be used diagnostically, have not been found.