NONQUADRATIC LYAPUNOV FUNCTIONS FOR ROBUST STABILITY ANALYSIS OF LINEAR UNCERTAIN SYSTEMS

被引:101
作者
ZELENTSOVSKY, AL [1 ]
机构
[1] MOSCOW SYST STUDIES INST,MOSCOW 117312,RUSSIA
关键词
D O I
10.1109/9.273350
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this note, we derive conditions of existence of a homogeneous polynomial Lyapunov function of an arbitrary even degree establishing global asymptotic stability of linear system with box-bounded uncertainty. Verification of these conditions is reduced to solving a convex minimization problem. We produce numerical examples that demonstrate significant improvement in estimates of admissible uncertainty bounds compared with estimates obtained via the most commonly used quadratic Lyapunov functions.
引用
收藏
页码:135 / 138
页数:4
相关论文
共 12 条
[1]  
[Anonymous], 1969, THEORY MATRICES
[2]  
Baillieul J., 1980, Nonlinear Analysis Theory, Methods & Applications, V4, P879, DOI 10.1016/0362-546X(80)90002-4
[3]   METHOD OF POWER-TRANSFORMATIONS FOR ANALYSIS OF STABILITY OF NON-LINEAR CONTROL-SYSTEMS [J].
BARKIN, AI ;
ZELENTSOVSKY, AL .
SYSTEMS & CONTROL LETTERS, 1983, 3 (05) :303-310
[4]   ROBUST STABILITY AND PERFORMANCE ANALYSIS FOR LINEAR DYNAMIC-SYSTEMS [J].
BERNSTEIN, DS ;
HADDAD, WM .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1989, 34 (07) :751-758
[5]  
Brockett R. W., 1973, GEOMETRIC METHODS SY, P213
[6]   THE CONSTRAINED LYAPUNOV PROBLEM AND ITS APPLICATION TO ROBUST OUTPUT-FEEDBACK STABILIZATION [J].
GALIMIDI, AR ;
BARMISH, BR .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1986, 31 (05) :410-419
[7]  
GELIG AH, 1978, STABILITY SYSTEMS MU
[8]   ROBUST-CONTROL WITH STRUCTURED PERTURBATIONS [J].
KEEL, LH ;
BHATTACHARYYA, SP ;
HOWZE, JW .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1988, 33 (01) :68-78
[9]  
LEEL MA, 1990, IEEE T AUTOMAT CONTR, V35, P1068
[10]  
PIATNITSKIY ES, 1982, SYSTEMS CONTROL LETT, V2, P130