DECAY OF SOLUTIONS TO MAGNETOHYDRODYNAMICS EQUATIONS IN 2 SPACE DIMENSIONS

被引:15
作者
GUO, BL [1 ]
ZHANG, LH [1 ]
机构
[1] OHIO STATE UNIV, DEPT MATH, COLUMBUS, OH 43210 USA
来源
PROCEEDINGS OF THE ROYAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES | 1995年 / 449卷 / 1935期
关键词
D O I
10.1098/rspa.1995.0033
中图分类号
学科分类号
摘要
We present a simple method for verifying the uniform L(1) bound and establish L(2) decay of the global solutions to the initial-value problems for the magnetohydrodynamics equations in two space dimensions.
引用
收藏
页码:79 / 91
页数:13
相关论文
共 28 条
[3]   DECAY OF SOLUTIONS OF SOME NONLINEAR-WAVE EQUATIONS [J].
AMICK, CJ ;
BONA, JL ;
SCHONBEK, ME .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1989, 81 (01) :1-49
[4]  
Biler P., 1992, DIFFERENTIAL INTEGRA, V5, P891
[5]  
Biler P., 1984, B POLISH ACAD SCI MA, V32, P275
[6]   PARTIAL REGULARITY OF SUITABLE WEAK SOLUTIONS OF THE NAVIER-STOKES EQUATIONS [J].
CAFFARELLI, L ;
KOHN, R ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1982, 35 (06) :771-831
[7]   LN SOLUTIONS OF THE STATIONARY AND NONSTATIONARY NAVIER-STOKES EQUATIONS IN RN [J].
CHEN, ZM .
PACIFIC JOURNAL OF MATHEMATICS, 1993, 158 (02) :293-303
[8]   SOLUTIONS OF THE STATIONARY AND NONSTATIONARY NAVIER-STOKES EQUATIONS IN EXTERIOR DOMAINS [J].
CHEN, ZM .
PACIFIC JOURNAL OF MATHEMATICS, 1993, 159 (02) :227-240
[9]  
DAOXING X, 1984, THEORY REAL ANAL FUN
[10]   TEMPORAL ASYMPTOTIC-BEHAVIOR OF SOLUTIONS OF THE BENJAMIN-ONO-BURGERS EQUATION [J].
DIX, DB .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1991, 90 (02) :238-287