LARGE DEVIATIONS AND THE EQUIVALENCE OF ENSEMBLES FOR GIBBSIAN PARTICLE-SYSTEMS WITH SUPERSTABLE INTERACTION

被引:41
作者
GEORGII, HO
机构
[1] Mathematisches Institut der Universität München, München, D-80333
关键词
Mathematics Subject Classification (1991): 60F10; 60G55; 60K35; 82B05; 82B21;
D O I
10.1007/BF01199021
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For Gibbsian systems of particles in R(d), we investigate large deviations of the translation invariant empirical fields in increasing boxes. The particle interaction is given by a superstable, regular pair potential. The large deviation principle is established for systems with free or periodic boundary conditions and, under a stronger stability hypothesis on the potential, for systems with tempered boundary conditions, and for tempered (infinite-volume) Gibbs measures. As a by-product we obtain the Gibbs variational formula for the pressure. We also prove the asymptotic equivalence of microcanonical and grand canonical Gibbs distributions and establish a variational expression for the thermodynamic entropy density.
引用
收藏
页码:171 / 195
页数:25
相关论文
共 18 条
[11]  
Lenard, 1973, LECT NOTE PHYS, V20
[12]  
Martin-Lof A, 1979, LECT NOTES PHYS, V101
[13]  
MATTHES K, 1978, INFINITELY DIVISIBLE
[14]  
Nguyen X., 1979, Z WAHRSCHEINLICHKEIT, V48, P133
[15]   HYDRODYNAMICAL LIMIT FOR A HAMILTONIAN SYSTEM WITH WEAK NOISE [J].
OLLA, S ;
VARADHAN, SRS ;
YAU, HT .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 155 (03) :523-560
[16]   SUPERSTABLE INTERACTIONS IN CLASSICAL STATISTICAL MECHANICS [J].
RUELLE, D .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1970, 18 (02) :127-&
[17]  
RUELLE D, 1963, HELV PHYS ACTA, V36, P183
[18]  
RUELLE D, 1969, STATISTICAL MECHANIC