LARGE DEVIATIONS AND THE EQUIVALENCE OF ENSEMBLES FOR GIBBSIAN PARTICLE-SYSTEMS WITH SUPERSTABLE INTERACTION

被引:41
作者
GEORGII, HO
机构
[1] Mathematisches Institut der Universität München, München, D-80333
关键词
Mathematics Subject Classification (1991): 60F10; 60G55; 60K35; 82B05; 82B21;
D O I
10.1007/BF01199021
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For Gibbsian systems of particles in R(d), we investigate large deviations of the translation invariant empirical fields in increasing boxes. The particle interaction is given by a superstable, regular pair potential. The large deviation principle is established for systems with free or periodic boundary conditions and, under a stronger stability hypothesis on the potential, for systems with tempered boundary conditions, and for tempered (infinite-volume) Gibbs measures. As a by-product we obtain the Gibbs variational formula for the pressure. We also prove the asymptotic equivalence of microcanonical and grand canonical Gibbs distributions and establish a variational expression for the thermodynamic entropy density.
引用
收藏
页码:171 / 195
页数:25
相关论文
共 18 条
[1]  
[Anonymous], 1989, LARGE DEVIATIONS
[2]  
Dembo A., 1993, LARGE DEVIATIONS TEC
[3]  
DOBRUSHI.RL, 1967, THEOR PROBAB APPL+, V12, P535
[4]  
Dobrushin R. L., 1970, THEOR MATH PHYS, V4, P705
[5]  
Fritz J., 1970, STUDIA SCI MATH HUNG, V5, P369
[6]  
GALLAVOTTI G, 1968, ANN I H POINCARE A, V8, P287
[7]  
Georgii H-O, 1988, GIBBS MEASURES PHASE
[8]   LARGE DEVIATIONS AND MAXIMUM-ENTROPY PRINCIPLE FOR INTERACTING RANDOM-FIELDS ON Z(D) [J].
GEORGII, HO .
ANNALS OF PROBABILITY, 1993, 21 (04) :1845-1875
[9]   LARGE DEVIATIONS AND THE MAXIMUM-ENTROPY PRINCIPLE FOR MARKED POINT RANDOM-FIELDS [J].
GEORGII, HO ;
ZESSIN, H .
PROBABILITY THEORY AND RELATED FIELDS, 1993, 96 (02) :177-204
[10]  
GEORGII HO, 1993, 1992 P PRAG WORKSH P