NORMS OF DIRICHLET KERNELS AND SOME OTHER TRIGONOMETRIC POLYNOMIALS IN L(P)-SPACES

被引:6
作者
DYACHENKO, MI
机构
关键词
D O I
10.1070/SM1994v078n02ABEH003469
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The following problem is considered. Let a = {a(n)}n=1M = {a(n1), ..., n(m)}n1, ...,n(m)=1M1, .., M(m) be a finite m-fold sequence of nonnegative numbers such that if n greater-than-or-equal-to k then a(n) less-than-or-equal-to a(k), and Q(x) = SIGMA(n=1)M, a(n)e(inx). The purpose of the work is to give best possible upper estimates of the norms \\Q(x)\\p and \\Q(x)\\delta, p with delta > 0 in terms of the coefficients {a(n)}. The Dirichlet kernels D(U)(x) = SIGMA(n is-an-element-of U)e(inx) with U is-an-element-of A1 present a particular case of Q(x). Bibliography: 14 titles.
引用
收藏
页码:267 / 282
页数:16
相关论文
共 13 条
[1]  
BABENKO KI, 1978, SOV MATH DOKL, V19, P1457
[2]  
BABENKO KI, 1971, 52 I PRIKL MAT AK SS
[3]  
Belinski E. ` S., 1977, METRIC QUESTIONS THE, P19
[4]  
BELINSKI ES, 1986, MATH NOTES, V39, P953
[5]   LP NORMS OF CERTAIN KERNELS ON THE N-DIMENSIONAL TORUS [J].
COLZANI, L ;
SOARDI, PM .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1981, 266 (02) :617-627
[6]  
Dyachenko M.I, 1986, SOVIET MATH IZ VUZ, V30, P54
[7]  
DYACHENKO MI, 1989, U MATH B, V44, P41
[8]  
DYACHENKO MI, 1990, ANAL MATH, V16, P173
[9]  
Dyachenko MI., 1987, MATH USSR SB, V57, P57, DOI [10.1070/SM1987v057n01ABEH003055, DOI 10.1070/SM1987V057N01ABEH003055]