IN-SITU MEASUREMENT OF MICROBIAL BIOMASS, COMMUNITY STRUCTURE AND NUTRITIONAL-STATUS

被引:56
作者
WHITE, DC
机构
来源
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 1993年 / 344卷 / 1670期
关键词
D O I
10.1098/rsta.1993.0075
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In sediments and soils the extant microbiota that can be counted by direct microscopy have proved exceedingly difficult to isolate and culture. Classical tests are time consuming and provide little indication of the interactions within the community, the community nutritional status or metabolic activity, The in situ method is based on the extraction of 'signature' lipid biomarkers (SLB) from the cell membranes and walls of microorganisms. Lipids are cellular components that are recoverable by extraction with organic solvents. Lipids are an essential component of the membrane of all cells and play a role as storage materials. Extraction of the lipid components of the microbiota from soils and sediments provides both purification and concentration together with an in situ quantitative analysis of the microbial biomass, community structure, and nutritional status. The determination of the total phospholipid ester-linked fatty acids (PLFA) provides a quantitative measure of the viable biomass. Viable microbes have an intact membrane which contains phospholipids (and PLFA). With cell death enzymes hydrolyze the phosphate group within minutes to hours. The lipid core remains as diglyceride (DG). The resulting DG has the same signature fatty acids as the phospholipids (until it degrades) so a comparison of the ratio Of PLFA to DG provides an indication of the viable and non-viable microbes. AnalysiS by SLB technique provides a quantitative definition of the microbial community structure as specific groups of microbes contain characteristic PLFA patterns. The analysis of other lipids such as the sterols (for the microeukaryotes - nematodes, algae, protozoa), glycolipids (for the phototrophs, gram-positive bacteria), or the hydroxy fatty acids in the lipopolysaccharide of the lipid A (gram-negative bacteria) can provide more detailed community structure analysis. The formation of poly beta-hydroxyalkanoic acid (PHA) in bacteria or triglyceride (TG) in the microeukaryotes relative to the PLFA provides a measure of the nutritional status. Bacteria grown with adequate carbon and terminal electron acceptors form PHA when they cannot divide, because some essential component is missing. Rates of incorporation of C-14-acetate into PHA relative to PLFA is a sensitive indicator of disturbance artifacts in estimates of metabolic activity in sediments with redox gradients. Exposure to toxic environments can lead to minicell formation and increases in specific PLFAS. Respiratory quinone structure indicates the proportions of aerobic/anaerobic activities in the community. The SLB technology provides quantitative in situ information that -define the microbial ecology in sedimentary geochemical processes.
引用
收藏
页码:59 / 67
页数:9
相关论文
共 34 条