Adaptive Weight Estimator for Quantum Error Correction in a Time-Dependent Environment

被引:22
作者
Spitz, Stephen T. [1 ]
Tarasinski, Brian [2 ]
Beenakker, Carlo W. J. [1 ]
O'Brien, Thomas E. [1 ]
机构
[1] Leiden Univ, Inst Lorentz, POB 9506, NL-2300 RA Leiden, Netherlands
[2] Delft Univ Technol, QuTech, POB 5046, NL-2600 GA Delft, Netherlands
关键词
quantum computing; quantum error correction; surface code;
D O I
10.1002/qute.201800012
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum error correction of a surface code or repetition code requires the pairwise matching of error events in a space-time graph of qubit measurements, such that the total weight of the matching is minimized. The input weights follow from a physical model of the error processes that affect the qubits. This approach becomes problematic if the system has sources of error that change over time. Here, it is shown that the weights can be determined from the measured data in the absence of an error model. The resulting adaptive decoder performs well in a time-dependent environment, provided that the characteristic timescale tau(env) of the variations is greater than delta t/(p) over bar, with dt the duration of one error-correction cycle and (p) over bar the typical error probability per qubit in one cycle.
引用
收藏
页数:8
相关论文
共 22 条
[1]  
[Anonymous], 1998, QUANTUM CODES LATTIC
[2]  
Baireuther P., 2018, ARXIV170507855
[3]  
Combes J, 2014, ARXIV14055656
[4]  
Delfosse N, 2014, IEEE INT SYMP INFO, P1071, DOI 10.1109/ISIT.2014.6874997
[5]   Quantum error correction for beginners [J].
Devitt, Simon J. ;
Munro, William J. ;
Nemoto, Kae .
REPORTS ON PROGRESS IN PHYSICS, 2013, 76 (07)
[6]   PATHS TREES AND FLOWERS [J].
EDMONDS, J .
CANADIAN JOURNAL OF MATHEMATICS, 1965, 17 (03) :449-&
[7]  
Fowler A. G., 2014, ARXIV14051454
[8]  
Fowler A. G., 2013, ARXIV13100863
[9]  
Fowler AG, 2015, QUANTUM INF COMPUT, V15, P145
[10]   Topological Code Autotune [J].
Fowler, Austin G. ;
Whiteside, Adam C. ;
McInnes, Angus L. ;
Rabbani, Alimohammad .
PHYSICAL REVIEW X, 2012, 2 (04)