MULTIPLICATIVE GROUP OF INVARIANCE OF PHASE-SPACE AND NATURAL TIME-SCALE FOR CHAOTIC ATTRACTORS

被引:3
|
作者
CHECHETKIN, VR
EZHOV, AA
KNIZHNIKOVA, LA
KUTVITSKII, VA
机构
[1] Troitsk Institute of Innovation and Thermonuclear Investigations - TRINITI, Troitsk
关键词
D O I
10.1016/0375-9601(92)90056-R
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A simple multiplicative group of invariance of the phase space of autonomous differential equations is related to the various reparametrizations of trajectories in phase space. We discuss some consequences of this invariance for chaotic attractors and random walks on them.
引用
收藏
页码:370 / 374
页数:5
相关论文
共 50 条
  • [31] On the perpendicular scale of electron phase-space holes
    Franz, JR
    Kintner, PM
    Seyler, CE
    Pickett, JS
    Scudder, JD
    GEOPHYSICAL RESEARCH LETTERS, 2000, 27 (02) : 169 - 172
  • [32] PHASE-SPACE ANALYSIS OF CHAOTIC SPECTRA IN A CONSERVATIVE HAMILTONIAN SYSTEM
    ECKHARDT, B
    LLORENTE, JMG
    POLLAK, E
    CHEMICAL PHYSICS LETTERS, 1990, 174 (3-4) : 325 - 332
  • [33] CHAOTIC DYNAMICS IN HAMILTONIAN-SYSTEMS WITH DIVIDED PHASE-SPACE
    CHIRIKOV, BV
    LECTURE NOTES IN PHYSICS, 1983, 179 : 29 - 46
  • [34] Time-scale invariance as an emergent property in a perceptron with realistic, noisy neurons
    Buhusi, Catalin V.
    Oprisan, Sorinel A.
    BEHAVIOURAL PROCESSES, 2013, 95 : 60 - 70
  • [35] RELAXATION-TIME AND RANDOMNESS IN PHASE-SPACE
    CASARTELLI, M
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1983, 76 (02): : 97 - 108
  • [36] PHASE-SPACE ANALYSIS OF TIME CORRELATION FUNCTIONS
    AGARWAL, GS
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1968, 13 (12): : 1647 - &
  • [37] ON THE GROUP OF TRANSLATIONS AND INVERSIONS OF PHASE-SPACE AND THE WIGNER FUNCTIONS
    DAHL, JP
    PHYSICA SCRIPTA, 1982, 25 (04): : 499 - 503
  • [38] Optimizing phase-space scanning for a dynamic system monitoring chaotic media
    S. M. Slobodyan
    Measurement Techniques, 2006, 49 : 1 - 6
  • [39] Scale invariance in chaotic time series: Classical and quantum examples
    Landa, Emmanuel
    Morales, Irving O.
    Stransky, Pavel
    Fossion, Ruben
    Velazquez, Victor
    Lopez Vieyra, J. C.
    Frank, Alejandro
    CHAOS THEORY: MODELING, SIMULATION AND APPLICATIONS, 2011, : 247 - 254
  • [40] QUANTUM PHASE-SPACE OF THE GROUP OF AFFINE TRANSFORMATIONS OF THE LINE
    KUPERSHMIDT, BA
    PHYSICS LETTERS A, 1994, 185 (03) : 238 - 240