COMPUTATION OF A FEW LYAPUNOV EXPONENTS FOR CONTINUOUS AND DISCRETE DYNAMICAL-SYSTEMS

被引:73
作者
DIECI, L
VANVLECK, ES
机构
[1] GEORGIA INST TECHNOL,SCH MATH,ATLANTA,GA 30332
[2] COLORADO SCH MINES,DEPT MATH & COMP SCI,GOLDEN,CO 80401
基金
美国国家科学基金会;
关键词
LYAPUNOV EXPONENTS; ORTHOGONALIZATION TECHNIQUES; WEAKLY SKEW-SYMMETRICAL SYSTEMS;
D O I
10.1016/0168-9274(95)00033-Q
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider QR-based method for computing the first few Lyapunov exponents of continuous and discrete dynamical systems. Algorithmic developments are discussed. Implementation details, error estimation and testing are also given.
引用
收藏
页码:275 / 291
页数:17
相关论文
共 21 条
[1]  
Benettin G., 1980, MECCANICA, V15, P9
[2]  
Benettin G., 1980, MECCANICA, V15, P21, DOI [DOI 10.1007/BF02128237, 10.1007/BF02128236, DOI 10.1007/BF02128236]
[3]   STABILITY OF RUNGE-KUTTA METHODS FOR TRAJECTORY PROBLEMS [J].
COOPER, GJ .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1987, 7 (01) :1-13
[4]  
DEKKER K, 1984, CWI MONOGRAPH, V2
[5]   UNITARY INTEGRATORS AND APPLICATIONS TO CONTINUOUS ORTHONORMALIZATION TECHNIQUES [J].
DIECI, L ;
RUSSELL, RD ;
VANVLECK, ES .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1994, 31 (01) :261-281
[6]  
DIECI L, IN PRESS SIAM J NUME
[7]  
DRESSLER U, 1988, PHYS REV A, V38, P213
[8]   ERGODIC-THEORY OF CHAOS AND STRANGE ATTRACTORS [J].
ECKMANN, JP ;
RUELLE, D .
REVIEWS OF MODERN PHYSICS, 1985, 57 (03) :617-656
[9]   COMPARISON OF DIFFERENT METHODS FOR COMPUTING LYAPUNOV EXPONENTS [J].
GEIST, K ;
PARLITZ, U ;
LAUTERBORN, W .
PROGRESS OF THEORETICAL PHYSICS, 1990, 83 (05) :875-893
[10]   STABILITY AND LYAPUNOV STABILITY OF DYNAMIC-SYSTEMS - A DIFFERENTIAL APPROACH AND A NUMERICAL-METHOD [J].
GOLDHIRSCH, I ;
SULEM, PL ;
ORSZAG, SA .
PHYSICA D, 1987, 27 (03) :311-337