ON GLOBAL WEAK SOLUTIONS OF THE NONSTATIONARY 2-PHASE STOKES-FLOW

被引:23
作者
GIGA, Y [1 ]
TAKAHASHI, S [1 ]
机构
[1] TOKYO DENKI UNIV,FAC SCI & ENGN,DEPT MATH SCI,HATOYAMA,SAITAMA 35003,JAPAN
关键词
GLOBAL SOLUTIONS; 2-PHASE STOKES SYSTEM; INTERFACE EQUATION; GENERALIZED EVOLUTION; UPPER SEMICONTINUOUS CONVEXIFICATION;
D O I
10.1137/S0036141092231914
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A global-in-time weak solution of the nonstationary two-phase Stokes flow is constructed for arbitrary given initial phase configuration (under periodic boundary condition) when two viscosities are close. The solution presented here tracks the evolution of the interface after it develops singularities. The theory of viscosity solutions is adapted to solve the interface equation. Surface tension effects are ignored here.
引用
收藏
页码:876 / 893
页数:18
相关论文
共 33 条
[21]  
Solonnikov V. A., 1988, ZAP NAUCHN SEM LENIN, V152, P672
[22]  
Solonnikov V.A., 1986, J SOVIET MATH, V32, P223
[23]   SOLVABILITY OF A PROBLEM ON THE MOTION OF A VISCOUS INCOMPRESSIBLE FLUID BOUNDED BY A FREE-SURFACE [J].
SOLONNIKOV, VA .
MATHEMATICS OF THE USSR-IZVESTIYA, 1977, 11 (06) :1323-1358
[24]  
SOLONNIKOV VA, 1987, VESTNIK LENINGRAD U, V20, P52
[25]  
SYLVESTER DLG, 1990, COMMUN PART DIFF EQ, V15, P823
[26]  
TAKAHASHI S, IN PRESS ADV MATH SC
[27]   GLOBAL EXISTENCE OF 2-PHASE NONHOMOGENEOUS VISCOUS INCOMPRESSIBLE FLUID-FLOW [J].
TANAKA, N .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1993, 18 (1-2) :41-81
[28]   ON THE FREE-BOUNDARY VALUE-PROBLEM FOR COMPRESSIBLE VISCOUS-FLUID MOTION [J].
TANI, A .
JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 1981, 21 (04) :839-859
[29]  
TANI T, 1988, KOKYUROKU RIMS KYOTO, V698, P146
[30]  
TANI T, 1985, COMMENT MATH U CAROL, V26, P201