ON GLOBAL WEAK SOLUTIONS OF THE NONSTATIONARY 2-PHASE STOKES-FLOW

被引:23
作者
GIGA, Y [1 ]
TAKAHASHI, S [1 ]
机构
[1] TOKYO DENKI UNIV,FAC SCI & ENGN,DEPT MATH SCI,HATOYAMA,SAITAMA 35003,JAPAN
关键词
GLOBAL SOLUTIONS; 2-PHASE STOKES SYSTEM; INTERFACE EQUATION; GENERALIZED EVOLUTION; UPPER SEMICONTINUOUS CONVEXIFICATION;
D O I
10.1137/S0036141092231914
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A global-in-time weak solution of the nonstationary two-phase Stokes flow is constructed for arbitrary given initial phase configuration (under periodic boundary condition) when two viscosities are close. The solution presented here tracks the evolution of the interface after it develops singularities. The theory of viscosity solutions is adapted to solve the interface equation. Surface tension effects are ignored here.
引用
收藏
页码:876 / 893
页数:18
相关论文
共 33 条
[11]  
DENISOVA IV, 1991, P STEKLOV I MATH, V3, P1
[12]   DIFFERENTIAL-GAMES AND REPRESENTATION FORMULAS FOR SOLUTIONS OF HAMILTON-JACOBI-ISAACS EQUATIONS [J].
EVANS, LC ;
SOUGANIDIS, PE .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1984, 33 (05) :773-797
[13]   MOTION OF LEVEL SETS BY MEAN-CURVATURE .1. [J].
EVANS, LC ;
SPRUCK, J .
JOURNAL OF DIFFERENTIAL GEOMETRY, 1991, 33 (03) :635-681
[14]   GLOBAL EXISTENCE OF WEAK SOLUTIONS FOR INTERFACE EQUATIONS COUPLED WITH DIFFUSION-EQUATIONS [J].
GIGA, Y ;
GOTO, S ;
ISHII, H .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1992, 23 (04) :821-835
[15]   A DYNAMIC FREE-BOUNDARY PROBLEM IN PLASMA PHYSICS [J].
GIGA, Y ;
YOSHIDA, Z .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1990, 21 (05) :1118-1138
[16]  
Giga Y., 1989, Journal of the Faculty of Science, University of Tokyo, Section 1A (Mathematics), V36, P103
[17]   PERRON METHOD FOR HAMILTON-JACOBI EQUATIONS [J].
ISHII, H .
DUKE MATHEMATICAL JOURNAL, 1987, 55 (02) :369-384
[18]  
KOHN RV, 1986, ADV MULTIPHASE FLOW, P123
[19]  
Solonnikov V.A., 1990, ALGEBRA ANALIZ, V1, P227
[20]  
Solonnikov V. A., 1988, MATH USSR IZV, V31, P381