ON GLOBAL WEAK SOLUTIONS OF THE NONSTATIONARY 2-PHASE STOKES-FLOW

被引:23
作者
GIGA, Y [1 ]
TAKAHASHI, S [1 ]
机构
[1] TOKYO DENKI UNIV,FAC SCI & ENGN,DEPT MATH SCI,HATOYAMA,SAITAMA 35003,JAPAN
关键词
GLOBAL SOLUTIONS; 2-PHASE STOKES SYSTEM; INTERFACE EQUATION; GENERALIZED EVOLUTION; UPPER SEMICONTINUOUS CONVEXIFICATION;
D O I
10.1137/S0036141092231914
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A global-in-time weak solution of the nonstationary two-phase Stokes flow is constructed for arbitrary given initial phase configuration (under periodic boundary condition) when two viscosities are close. The solution presented here tracks the evolution of the interface after it develops singularities. The theory of viscosity solutions is adapted to solve the interface equation. Surface tension effects are ignored here.
引用
收藏
页码:876 / 893
页数:18
相关论文
共 33 条
[1]   SMALL-TIME EXISTENCE FOR THE NAVIER-STOKES EQUATIONS WITH A FREE-SURFACE [J].
ALLAIN, G .
APPLIED MATHEMATICS AND OPTIMIZATION, 1987, 16 (01) :37-50
[2]  
Aubin J.P., 1990, SET-VALUED ANAL, V2, DOI 10.1007/978-0-8176-4848-0
[3]  
BARLES G, 1987, RAIRO-MATH MODEL NUM, V21, P557
[5]  
BEALE JT, 1984, ARCH RATION MECH AN, V84, P307
[6]  
Campanato S., 1980, ANN SCUOLA NORM SUP, V7, P65
[7]  
CHEN YG, 1991, J DIFFER GEOM, V33, P749
[8]  
CHEN YG, 1991, PROCEEDINGS OF THE INTERNATIONAL SYMPOSIUM ON FUNCTIONAL ANALYSIS & RELATED TOPICS, P43
[9]   USERS GUIDE TO VISCOSITY SOLUTIONS OF 2ND-ORDER PARTIAL-DIFFERENTIAL EQUATIONS [J].
CRANDALL, MG ;
ISHII, H ;
LIONS, PL .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 27 (01) :1-67
[10]  
Denisova I. V., 1991, J SOVIET MATH, V56, P2309