SPECTRAL GAPS OF THE ONE-DIMENSIONAL SCHRODINGER OPERATORS WITH SINGULAR PERIODIC POTENTIALS

被引:0
作者
Mikhailets, Vladimir [1 ]
Molyboga, Volodymyr [1 ]
机构
[1] Natl Acad Sci Ukraine, Inst Math, 3 Tereshchenkivska, UA-01601 Kiev, Ukraine
来源
METHODS OF FUNCTIONAL ANALYSIS AND TOPOLOGY | 2009年 / 15卷 / 01期
关键词
Hill-Schrodinger operators; singular potentials; spectral gaps;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The behavior of the lengths of spectral gaps {gamma(n)(q)}(n=1)infinity of the Hill-Schrodinger operators S(q)u =-u '' + q(x)u, u is an element of Dom (S(q)), with real-valued 1-periodic distributional potentials q(x) is an element of H-1-per(-1) (R) is studied. We show that they exhibit the same behavior as the Fourier coefficients {(q) over cap (n)}(n=-infinity)(infinity) of the potentials q(x) with respect to the weighted sequence spaces h(delta,phi) s >-1, phi is an element of SV. The case q(x) is an element of L-1-per(2)(R), s is an element of z(+), phi equivalent to 1, corresponds to the Marchenko-Ostrovskii Theorem.
引用
收藏
页码:31 / 40
页数:10
相关论文
共 32 条
[1]  
Berezanskii Yu. M., 1968, AM MATH SOC PROVIDE
[2]  
DJAKOV P, 2003, SELECTA MATH, V9, P495
[3]  
Djakov P., 2006, USP MAT NAUK, V61, P77
[4]  
Djakov P., 2007, ARXIVMATHSP07100237, P1
[5]  
Dunford N., 1963, LINEAR OPERATORS PAR
[6]  
Edwards R., 1985, FOURIER SERIES MODER, V1
[7]  
GORBACHUK VI, 1991, BOUNDARY VALUE PROBL
[8]  
Hochstadt H., 1963, P AM MATH SOC, V14, P930, DOI 10.2307/2035029
[9]  
Hryniv R.O., 2001, METHODS FUNCT ANAL T, V7, P31
[10]   Estimates for periodic and Dirichlet eigenvalues of the Schrodinger operator [J].
Kappeler, T ;
Mityagin, B .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2001, 33 (01) :113-152