MAXIMUM-LIKELIHOOD REGRESSION ON RELEVANT COMPONENTS

被引:0
|
作者
HELLAND, IS
机构
来源
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL | 1992年 / 54卷 / 02期
关键词
AKAIKE CRITERION; COLLINEARITY; LIKELIHOOD RATIO TEST; MULTIPLE REGRESSION; PREDICTION; PRINCIPAL COMPONENTS; RELEVANT COMPONENTS FROM EXPLANATORY VARIABLES;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Most regression methods for multicollinear data are only based on assumptions about the conditional distribution of the dependent variable, given the explanatory variables. Here we propose a new prediction method taking a joint multinormal distribution for all the variables as the starting point. A hypothesis is formulated stating that only a fixed small number of components constructed from the explanatory variables is relevant for prediction, and maximum-likelihood-type estimates of the parameters in the model are developed under this hypothesis.
引用
收藏
页码:637 / 647
页数:11
相关论文
共 50 条